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We develop a theoretical model of surface-tension-driven, three-dimensional instabilities of
liquid-lined elastic tubes—a model for pulmonary airway closure. The model is based on
large-displacement shell theory, coupled to the equations of lubrication theory, modified to ensure
the exact representation of the system’s equilibrium configurations. The liquid film that lines the
initially uniform, axisymmetric tube can become unstable to a surface-tension-driven instability. We
show that, if the surface tension of the liquid lining is sufficiently largesrelative to the tube’s
bending stiffnessd, the axisymmetric redistribution of fluid by this instability can increase the wall
compression to such an extent that the system becomes unstable to a secondary, nonaxisymmetric
instability which causes the tube wall to buckle. We establish the conditions for the occurrence of
the nonaxisymmetric instability by a linear stability analysis and use finite element simulations to
explore the system’s subsequent evolution in the large-displacement regime. The simulations show
that nonaxisymmetric instabilities allow the formation of occluding liquid bridges in situations in
which the volume of fluid is insufficient to occlude the tube in its axisymmetric state. Finally, we
discuss the implications of our results for the physiological problem of pulmonary airway
closure. ©2005 American Institute of Physics. fDOI: 10.1063/1.1862631g

I. INTRODUCTION

The pulmonary airways are coated with a thin liquid film
that serves many useful functions, such as trapping inhaled
particles and protecting the underlying cells from drying.1

The liquid lining can become unstable to the surface-tension-
driven Rayleigh–Plateau instability2–5 which initiates the re-
distribution of fluid into axisymmetric lobes. If the film
thickness is sufficiently large, the instability can result in the
occlusion of the airway with a liquid bridge—a phenomenon
known as airway closure.6

In the smaller airways, surface tension creates a large
pressure jump over the highly curved air-liquid interface
which causes a strong compression of the elastic airway
walls. The resulting wall deformation reduces the radius of
the air-liquid interface and thus facilitates the occurrence of
airway closure.7,8

In the lungs of a healthy individual, airway closure only
occurs in the small airways and at the end of expiration when
the airway radii are smallest and hence the liquid lining is
thickest. The occluding liquid bridges usually rupture during
the early stages of inspiration, a process that gives rise to
characteristic “crackling” noises. In many pulmonary dis-
eases, the susceptibility to airway closure is enhanced and
occluding liquid bridges may form in larger airways and per-
sist for larger fractions of the breathing cycle. In extreme
cases, the airways can remain occluded and this can lead to
severe respiratory problemsse.g., the respiratory distress
syndromed.

Over the past decade, a number of increasingly sophis-
ticated theoretical models of pulmonary airway closure have
been developed in the literature. One of the key objectives
has been the determination of the minimum volume of fluid
required to form an occluding liquid bridge. Following early
work on the Rayleigh–Plateau instability in rigid tubes,9,3–5

Kamm and Schroter8 were the first to consider the effects of
wall elasticity on pulmonary airway closure. They introduced
the concepts of “film collapse” and “compliant collapse” to
describe airway closure caused by the classical Rayleigh–
Plateau instability and by the surface-tension-driven collapse
of the airway wall, respectively. Halpern and Grotberg7 in-
vestigated the interaction between these two mechanisms and
studied the occurrence of airway closure via a combined
fluid-elastic instability. They showed that wall elasticity sig-
nificantly reduces the volume of fluid required to occlude an
axisymmetric airway. Their study also indicated that the
compression induced by the Rayleigh–Plateau instability can
cause large axisymmetric airway-wall deformations.

Motivated by the observation that strongly compressed,
cylindrical tubes tend to buckle nonaxisymmetrically,
Heil10,11investigated the static stability of thin-walled, elastic
tubes that are occluded by liquid bridges. He showed that the
compressive load that a liquid bridge exerts on the airway
wall can be strong enough to cause its nonaxisymmetric col-
lapse. Furthermore, he showed that the volume of fluid re-
quired to occlude a nonaxisymmetrically buckled airway is
much smaller than that required to occlude it in its axisym-
metric state.

In the context of the airway closure problem, the mere
existence of occluding liquid bridges of small volume does
not ensure that such occlusions can be formed via a continu-
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ous evolution from an initial state in which a uniform liquid
film lines the axisymmetric airway wall. The dynamic tran-
sition from an axisymmetricsand unoccludedd initial state to
a nonaxisymmetrically occluded configuration was first con-
sidered by Heil and White12 who studied the dynamic stabil-
ity of liquid-lined, elastic rings to nonaxisymmetric pertur-
bations sthe analysis also applies to the axially uniform
deformation of finite-length tubesd. Their study showed that
a liquid-lined ring is linearly unstable to nonaxisymmetric
perturbations if the compressive load created by the combi-
nation of the pleural pressure acting on its outside and the
surface tension acting on its inside exceeds a critical value;
this is consistent with static analyses of this problem by Hill
et al.13 and Rosenzweig and Jensen.14 Following the onset of
nonaxisymmetric instabilities, a strong destabilizing feed-
back between fluid and solid mechanics was shown to lead to
the complete occlusion of the ring’s cross section, provided
the surface tension was large enough. This demonstrated
that, at least in this simplified system, nonaxisymmetric in-
stabilities can lead to the occurrence of airway closure in
situations in which there is not enough fluid to occlude the
airway in its axisymmetric state.

The present paper extends Heil and White’s analysis to
three-dimensional instabilities. We show that the increase in
wall compression caused by Halpern and Grotberg’s primary
axisymmetric instability can initiate a secondary nonaxisym-
metric instability which causes the local buckling of the air-
way wall and ultimately results in the formation of a local-
ized occlusion. The mechanism allows the occurrence of
airway closure at small fluid volumes and for parameter val-
ues for whichsid the axially uniform state is still stable to
nonaxisymmetric perturbations andsii d for which the axi-
symmetric state remains unoccluded.

II. THE MODEL

We model the airway as an elastic, cylindrical tube of
undeformed radiusR0, wall thicknesshw, Young’s modulus
E, and Poisson ration. The tube is loaded by the external
spleurald pressurepext

* and it is lined with an incompressible
fluid of viscosity m and constant surface tensions* . When
the tube is undeformed, the fluid forms a uniform film of
thicknessH0

* =H0R0. Throughout this paper asterisks are used
to distinguish dimensional quantities from their nondimen-
sional equivalents.

A. Wall mechanics: Shell theory

We assume that the airway has a small wall thickness,
hw/R0!1, and use geometrically nonlinear shell theory to
describe its deformation in response to the combined loadf*

that the liquid lining and the external pressure exert on it. For
this purpose we parametrize the nondimensional vector to
the tube’s undeformed midplane,r w=r w

* /R0, by the nondi-
mensional Lagrangian coordinatesxa, measured along the
tube’s midplane such thatr w=fx1,sinsx2d ,cossx2dgT; see Fig.
1. The midplane metric and curvature tensors are given by
aab=aa ·ab and bab=n ·aa,b, respectively, whereaa=r w,a

andn=a13a2 are the outer normal on the wall. Throughout
this paper we use the summation convention and assume

that, unless specified otherwise, Greek and Latin indices
range from 1 to 2 and from 1 to 3, respectively; commas
indicate partial differentiation. When the tube deforms, ma-
terial points are displaced to their new positionsRwsxad
=r wsxad+vsxad. We decompose the displacement vectorv
into the undeformed basis vectors such thatv=vaaa+v3n.
The tangent and normal vectors to the deformed tube are
Aa=Rw,a andN=A13A2/ uA13A2u, and the deformed met-
ric and curvature tensors areAab=Aa ·Ab andBab=N ·Aa,b,
respectively. We denote the determinant of the deformed
metric tensor byA.

The buckling of thin cylindrical shells typically involves
large displacements and bending deformation but only small
in-plane smembraned deformations. Hence, the components
of the bending tensorkab=−sBab−babd can become large
whereas the components of the in-plane strain tensorgab

=1/2sAab−aabd remain small. This implies that the de-
formed in-plane basis vectorsAa are approximately un-
stretched and orthogonal to each other. Hence the strain in
the tube wall is small which allows us to use linear consti-
tutive equationssHooke’s lawd. The principle of virtual dis-
placements which governs the tube’s deformation can then
be written in the form

E E HEabgdFgabdggd +
1

12
Shw

R0
D2

kabdkgdG
−

1

12

1

s1 − n2d
Shw

R0
D2

f · dRw
ÎAJdx1dx2 = 0 s1d

ssee, e.g., Ref. 15d, wheref = f* /K is the load vector, nondi-
mensionalized by the tube’s bending stiffnessK
=Eshw/R0d3/ f12s1−n2dg and

Eabgd =
1

2s1 + ndSaagabd + aadabg +
2n

1 − n
aabagdD s2d

is the plane-stress stiffness tensor. Carrying out the variations
with respect to the displacementsvi and their derivatives
with respect to the Lagrangian coordinatesxa, transformss1d
into a variational equation of the form

E E sfidvi + fiadv,a
i + fiabdv,ab

i ddx1dx2 = 0, s3d

where the functionsf depend on the displacementsvi, their
first and second derivatives with respect to the Lagrangian
coordinatesxa, and on the load vectorf which includes con-

FIG. 1. Sketch of the model problem: A thin-walled elastic tube lined with
a liquid film. The tube buckles nonaxisymmetrically inN azimuthal lobes
and with an axial wavelengthL=2L. Also shown are the Lagrangian coor-
dinatesxa and the control radii used to document the system’s evolution.
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tributions that need to be determined from the fluid mechan-
ics; sees13d below.

If the rotation of material lines in the tube wall is small,
the strain and bending tensors can be approximated by Sand-
ers’ moderate rotation approximations,16

g11 = sv,2
1 − v,1

2 d2/8 + v,1
1 + sv,1

3 d2/2, s4d

g22 = sv,2
1 − v,1

2 d2/8 + sv,2
3 − v2d2/2 + v,2

2 + v3, s5d

g12 = g21 = sv,2
1 + v,1

2 + sv,2
3 − v2dv,1

3 d/2, s6d

and

k11 = − v,11
3 , k22 = v,2

2 − v,22
3 , s7d

k12 = k21 = − v,12
3 − v,2

1 /4 + 3v,1
2 /4. s8d

We will use these approximations in the stability analyses in
Secs. III A and IV A.

B. Fluid mechanics: Lubrication theory

To describe the surface-tension-driven flow in the liquid
film that lines the deforming tube, we parametrize the fluid
domain by introducing a vectorR f to a point at a distancex3

from the inner surface of the tube via

R fsx1,x2,x3,td = Rwsx1,x2,td + x3Sfsx1,x2,td. s9d

In this parametrization, the air-liquid interface is located at
x3=hsx1,x2,td, where the film thicknessh is measured in the
direction of the vectorSf, defined as

Sf =
1

ÎsN2d2 + sN3d2
s0,−N2,− N3dT. s10d

The volume of fluid “above” a patch bounded by the La-
grangian coordinate incrementsdx1 anddx2 on the inner sur-
face of the tube is then given bydV=Mdx1dx2 where

Msx1,x2,td =E
0

hsx1,x2,td Îgdx3, s11d

and g is the determinant of the metric tensorgij =R f,i ·R f,j

associated with the parametrizations9d.
If we assume that the film thicknessh is sand remainsd

much smaller than the minimum radii of curvature of the
wall and the air-liquid interface, and that the Reynolds num-
ber of the surface-tension-driven flow is small, then the evo-
lution of the film thickness can be described by lubrication
theory ssee, eg., Ref. 17d,

]M

]t̂
−

]

]xaS1

3
h3]kh

]xaD = 0, s12d

where we have used the assumption that coordinate lines
remain approximately orthogonal and unstretched—this is
consistent with the small-strain assumption already made in
the wall mechanics.kh=kh

*R0 is the curvature of the air-
liquid interfacesthe sign chosen such thatkh,0 for the ini-
tial uniform filmd and time has been nondimensionalized on
the viscous scale,t̂= t* / smR0/s*d. The fluid pressure is con-
stant through the thickness of the film. We use the pressure in

the airway lumen as the reference value and set it to zero.
Then the sdimensionald fluid pressure is given byp*

=khs* /R0.
The assumptions underlying the derivation ofs12d from

the three-dimensionals3Dd Navier–Stokes equations imply
that kh could be linearized with respect to the film thickness
h and the wall displacementsvi without loss ofsasymptoticd
accuracy in the limith,vi →0. Furthermore,]M /]t̂ could be
replaced by]h/]t̂. However, it was shown in Refs. 9 and 12
that Eq.s12d provides excellent predictions for the evolution
of the air-liquid interface even if the film thickness becomes
large and/or the tube wall highly curved, provided the exact
expressions forkh andM are usedssee Fig. 16 in Appendix
A for an illustrationd. This is because surface-tension-driven
flows evolve towards equilibrium configurations in which the
air-liquid interface has uniform curvature. Using the exact
expressions forM andkh ensures that these equilibrium con-
figurations are represented accurately bys12d: ] /]t=0 if and
only if kh=const, subject to the constraint that the volume of
fluid is conserved.

C. Fluid structure interaction

Fluid and solid mechanics interact in two ways:sid The
wall displacements change the geometry of the fluid domain.
This effect is represented by its parametrization via Eq.s9d.
Hence,M andkh in the evolution equations12d for the film
thicknessh also depend on the wall displacementsvi. sii d The
wall is exposed to the fluid pressurep* and the flow in the
liquid film generates a wall shear stress. If we measure the
external pressurepext=pext

* /K relative to the pressure in the
airway lumen then the combined load on the airway wall is
given by

f = − pextN + sSkhN − h
]kh

]xa AaD , s13d

where we have again exploited the fact that the Lagrangian
coordinate lines remain approximately orthogonal and un-
stretched. The parameter

s =
s*

KR0
s14d

is the nondimensional surface tension and represents the ra-
tio of the typical pressure jump over the curved air-liquid
interface to the wall’s bending stiffness. Large values ofs
indicate strong fluid-structure interaction.

Equations13d shows that the initial load on the unde-
formed airway is given by the pressure

pinit = pext+
s

1 − H0
. s15d

Increases ins and/orH0 increase the initial wall compres-
sion and thus make the wall more susceptible to buckling
instabilities. When we consider the effect of variations ins
andH0, we will usually compensate for thissobviousd desta-
bilizing effect by adjusting the external pressure so that the
tube remains subject to the same initial compressionpinit.
This procedure allows a clearer identification of the various
additional instability mechanisms that are involved in non-

031506-3 Three-dimensional instabilities Phys. Fluids 17, 031506 ~2005!

Downloaded 25 Aug 2005 to 130.88.16.108. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



axisymmetric airway closure. Interestingly, the procedure has
a strong resemblance to the clinical procedure of positive-
end-expiratory-pressure ventilation in which the destabiliz-
ing effect of a pathological increase in the surface tension of
the lung’s liquid lining is compensated for by an artificial
pressurization of the lung.

D. Presentation of the results

The time scale,Tvisc=mR0/s* , that we used for the non-
dimensionalization of the fluid equations12d yields a
parameter-free partial differential equation butTvisc does not
capture the dynamics of the surface-tension-driven thin-film
flows. The time scale for such flows is given byTlubri

=3mR0/ ss*H0
3d, provided the wall deformation and the

changes in the film thickness remain small. We wish to ana-
lyze the effect of variations inH0 and s* in problems with
strong fluid-structure interaction. Therefore we shall present
most of our results on a third time scale,t= t* /T where T
=m /K which is independent of these quantities.

To illustrate the temporal evolution of the system, we
will frequently show plots of the radii of the eight character-
istic pointssfour on the tube wall and four on the air-liquid
interfaced identified in Fig. 1. These radii allow a simple
characterization of the system’s deformation. For instance,
nonaxisymmetric buckling of the tube wall in the cross sec-
tion x=0 manifests itself by a decrease inR1 and an increase
in R2 whereasR1<R2 indicates that the cross section has
remained approximately axisymmetric.

The simulations presented below were performed with a
nondimensional wall thickness ofhw/R0=1/20. This value
represents a compromise between the values in the pulmo-
nary airwaysswhich tend to be slightly thickerd and the limi-
tations imposed by the use of thin-shell theory. Poisson’s
ratio was set ton=0.49 to reflect the near-incompressibility
of physiological tissue.

III. THE PRIMARY AXISYMMETRIC INSTABILITY

We will first sredinvestigate the axisymmetric instability
of liquid-lined elastic tubessfirst studied by Halpern and
Grotberg7d with our formulation. The results from this sec-
tion form the basis for Sec. IV A in which we analyze the
linear stability of the evolving axisymmetric state to nonaxi-
symmetric perturbations.

A. Linear stability analysis

Initially, the fluid forms a static, uniform film on the
axisymmetric tube wall. In this configuration, the relation
between the external pressurepext and the uniform radial wall
displacementv3=V0 is given by

pext= −
12

shw/R0d2

V0

1 + V0
−

s

1 + V0 − H̃0

, s16d

where we have used Sanders’ moderate rotation approxima-
tions for the strain and bending tensors.

H̃0 = 1 +V0 − Îs1 + V0d2 + H0sH0 − 2d s17d

is the uniform film thickness on the deformed tube.H̃0 in-
creases when the tube is compressed. To determine the sta-
bility of this uniform state to axisymmetric perturbations, we
expand the film thicknessh and the wall displacementsvi as

h = hs0d = H̃0 + eAHsAdevt̂ cosskx1d, s18d

v1 = vs0d1 = eAVsAd1evt̂ sinskx1d, s19d

v2 = 0, s20d

v3 = vs0d3 = V0 + eAVsAd3evt̂ cosskx1d, s21d

whereeA!1. We inserts18d–s21d into the Euler–Lagrange
equations of the variational principles1d, into the fluid equa-
tion s12d, and into the load termss13d and expand all equa-
tions in powers ofeA. At orderOseAd we obtain three linear
algebraic equations which can be written in matrix form as
Sy=0 wherey=sVsAd1,VsAd3,HsAdd is the vector of the pertur-
bation amplitudes. The temporal growth ratev of the pertur-
bation with axial wavenumberk=2p /L is determined by
detsSd=0. The exact expression for the growth ratev is too
lengthy to quote here but it has the form

v =
H̃0

3k2

3s1 + V0 − H̃0d
S 1

s1 + V0 − H̃0d2
− k2D

3H1 + OFsShw

R0
D2GJ . s22d

This shows that the neutrally stable wavenumberkneutr is the
reciprocal of the radius of the axially uniform interface,

kneutr= 1/s1 + V0 − H̃0d, s23d

and perturbations withk,kneutr have positive growth rates.
This is completely analogous to the behavior found in rigid
tubes.17 If we let the wall bending stiffnessK→` sby setting
s=0d, Eq. s22d becomes identical to the dispersion relation
for perturbations to liquid films that line uniform rigid tubes.
In that case the maximum growth ratevmax occurs for per-
turbations with wavenumberkmax=2p /Lmax=1/fÎ2s1−H0dg.
The plot of the dispersion relations22d for various values of
s in Fig. 2 shows that wall elasticityss.0d slightly in-
creases the growth rate of the fastest growing instability and
slightly decreases its wavenumber.

Qualitatively, these predictions agree with Halpern and
Grotberg’s results for the case of zero wall dampingsf=0 in
their modeld. A direct comparison is difficult because Halp-
ern and Grotberg’s model is based on different wall equa-
tions; see Appendix C for a more detailed discussion.

B. Numerical simulation in the nonlinear regime

1. Discretization

To follow the evolution of unstable axisymmetric pertur-
bations into the large-displacement regime, we set] /]x2=0
andv2=0 and discretized the wall and fluid equationss1d and
s12d in the domainx1P f0,Lg with finite elements. We ap-
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plied periodic boundary conditions that allow the develop-
ment of the fastest growing perturbation and setsv1=v,1

3

=h,1=kh,1=0d at x1=0 and x1=L. Generally we setL
=Î2ps1−H0d, half the wavelength of the fastest growing
perturbation to the film thickness in a rigid tube because wall
elasticity only has a small effect on the most unstable wave-
length; see Fig. 2. We will investigate the effect of variations
in the domain lengthL in Sec. IV B. The procedure em-
ployed for the discretization of the coupled equations is
based on that used in Ref. 12 where full details can be found.
Briefly, we represent the axial and radial wall displacements
by piecewise cubic Hermite polynomialsc jsx1d and write

vs0disx1, t̂d = o
j

Vijst̂dc jsx1d for i = 1 and 3. s24d

We insert these expansions into the variational principles3d
which becomes

HE
0

L

sfic j + fi1c j ,1 + fi11c j ,11ddx1JdVij = 0. s25d

The variations of thoseVij that are not determined by the
periodicity conditions are arbitrary and the expressions mul-
tiplied by the correspondingdVij must vanish. This provides
a system of nonlinear algebraic equations for the unknown
Vij . These equations still contain the load termsf, which have
to be determined from the solution of the fluid equations.

Equations12d involves the second derivative of the in-
terface curvaturekh which itself contains second derivatives
of the wall displacement fieldvi. Fourth derivatives of the
wall displacement field are not available from the Hermite
expansion ins24d. Therefore, Eq.s12d was solved by a mixed
finite element method in which independent Hermite interpo-
lations were used for the film’s thickness and its curvature,

hsx1, t̂d = o
j

Hjst̂dc jsx1d, k̃hsx1, t̂d = o
j

Kjst̂dc jsx1d.

s26d

The finite element expansionk̃h for the film curvature was
then used in the Galerkin solution of the weak form ofs12d
which was integrated by parts to yield the equations

f j
sHd =E

0

L S ]M

]t̂
c j +

h3

3

]k̃h

]x1

]c j

]x1Ddx1 = 0. s27d

After discretizing the time derivative with an adaptive BDF2
scheme,18 this provides a system of discrete equations for
thoseHj which are not determined by the periodicity condi-
tions. The equations were augmented by the weak equations
for the discrete curvaturesKj,

f j
sKd =E

0

L So
l

Klcl − khDc jdx1 = 0, s28d

where kh is the exact curvature of the air-liquid interface.
Newton’s method was used to solve the fully coupled system
of nonlinear algebraic equations that arise at each time step.
The associated linear systems were solved with the frontal
solver HSLIMA42 from the HSL2000 library.19 The simula-
tions were started from an initial state in whichv1=v3=0
and h=H0f1+eh cosspx1/Ldg, where eh=10−2 was used to
initiate the growth of the instability in a controlled manner.

To validate the numerical solution of the wall equations,
we considered the deformation of a finite-length tube with
clamped ends, subject to a constant external pressure. We
compared the predictions for the wall displacement field ob-
tained from the finite-element based discretization of the
variational principles3d against independent solutions ob-
tained from a finite-difference discretization of the corre-
sponding Euler–Lagrange equations. When plotted, the re-
sults were graphically indistinguishable. To validate the
numerical solution of the lubrication theory equationss12d,
we compared the initial growth rates of the axisymmetric
instability against those predicted by the dispersion relation
s22d. Furthermore, we repeated Gauglitz and Radke’s9 simu-
lations of the finite-amplitude evolution of the Rayleigh–
Plateau instability in rigid tubesssimulated here by setting
s=0, which corresponds to the case of infinite wall stiffnessd
and obtained excellent agreement with their resultsssee Ref.
20d. Finally, we performedsqualitatived comparisons with
Halpern and Grotberg’s simulations;7 see Appendix C for
details. The independence of all results on the time step and
the spatial resolution was confirmed.

2. Results

Figures 3 and 4 illustrate the system’s evolution forH0

=0.1 ands=100: Initially, the perturbation to the film thick-
ness grows exponentially and fluid drains into a main lobe
which is centered atx=0; see Fig. 3sad. As the volume of the
main lobe increases, the film thins in the right half of the
domain and in Fig. 3sbd, the development of a secondary
ssatellited lobe can be observed. The main and satellite lobes
are connected by a rapidly thinning “neck” region. The flow
resistance in this region increases withh−3, hence the flux
into the main lobe decreases rapidly even though the pres-
sure drop between the two lobes continues to increasessee
the right column in Fig. 3 which shows the normal compo-
nent, pext−skh, of the load on the wall; sincepext remains
constant, the graph gives an indication of the variations in
the interface curvature and the fluid pressured. Figure 3scd
shows the shape of the interface at large times, together with

FIG. 2. The dispersion relation for axisymmetric perturbations to axially
uniform liquid-lined tubes for different nondimensional surface tensionss:
Growth ratev=v*mR0/s* as a function of the wavenumberk. pinit =0, H0

=0.1.
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a closeup of the thin neck region. The corresponding plot of
the wall load indicates that the fluid in the main lobe exerts a
strong compression on the tube wall. The air-liquid interface
curvature in the satellite lobe is approximately uniform but
less negative than in the initial, axially uniform configura-
tion. Consequently, the tube wall is inflated in this region.

The system is not in equilibrium but the time scale for the
further redistribution of fluid is very large. This is illustrated
by the solid lines in Fig. 4, which show the evolution of the
radii R1, R3, Rh1, and Rh3: as the perturbation grows,Rh1

sRh3d decreasessincreasesd as fluid drains into the main lobe.
The compression of the tube nearx=0 reducesR1 while the
reduced interface curvature nearx=L inflates the tube and
thus increasesR3. In its axisymmetric state, the tube wall is
very stiff and despite the strong compression nearx=0, the
wall only undergoes very small radial deflections. Therefore,
the redistribution of the fluid is very similar to that observed
in rigid tubes for which it was shown by Gauglitz and
Radke,9 that an initial film thickness of at leastH0<0.12 is
required to allow the formation of an occluding liquid bridge
via a continuous evolution from the initial uniform liquid
film. For smaller values ofH0, fluid continues to drain from
the satellite lobe into the main lobe whose air-liquid interface
ultimately approaches the shape of an unduloid—a surface of
constant mean curvature.2 In practice, van der Waals forces
would cause the film to rupture in the neck region when the
film thickness falls below a critical value. This would create
two disconnected lobes which are separated by a dry patch.
However, this effect is not included in our model.

The broken lines in Fig. 4 show the evolution of the four
control radii when the nondimensional surface tension is in-
creased. As discussed in Sec. II D, we adjusted the external
pressure so that the initial compressionpinit is the same for
all cases. The additional wall compression generated by the
axisymmetric redistribution of fluid is given by the product
of the surface tensions and the change in interface curvature
relative to its value in the axially uniform state. Hence, for a
given shape of the air-liquid interface, an increase ins in-
creases the additional wall compression. In an elastic tube,
this reduces the radii of the wall and the air-liquid interface
and increases the wall compression even further. Figure 4
shows that, for sufficiently large values of the nondimen-
sional surface tensions, this destabilizing feedback can ini-
tiate an irreversible and extremely rapid collapse of the air-
liquid interface. The occurrence of airway closure via this
mechanism was first identified and studied by Halpern and
Grotberg.7

IV. THE SECONDARY NONAXISYMMETRIC
INSTABILITY

The preceding section showed that the redistribution of
fluid by the primary axisymmetric instability creates a strong
compression of the airway wall in the region of the main
lobe. We will now investigate whether this compressive load
can become large enough to initiate a secondary nonaxisym-
metric instability that causes the buckling of the airway wall.
We are particularly interested in parameter regimes in which
airway closure either by Halpern and Grotberg’s axisymmet-
ric mechanism or by Heil and White’s nonaxisymmetric, but
axially uniform mechanism is impossible.

FIG. 3. The axisymmetric fluid domainsleft columnd and the normal com-
ponent of the load on the wallsright columnd at different times.sad t
=2.203102, sbd t=5.03102, andscd t=4.953104. The inset inscd shows a
closeup of the thin “neck” region that connects the main and satellite lobe.
H0=0.1, s=100,pinit =2.9, L=Î2ps1−H0d. Time scalet= t* / sm /Kd.

FIG. 4. sad The wall radiiR1 slower linesd andR3 supper linesd, andsbd the
corresponding radii of the air-liquid interface during the axisymmetric Ray-
leigh instability for different values of the surface tensions. When s
=100, an axisymmetric lobe forms which does not occlude the airway. As
the surface tension is increased, the airway can undergo compliant collapse
leading to airway closure.H0=0.1, L=Î2ps1−H0d, pinit =2.9.
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A. Linear stability analysis

1. Formulation and numerical solution

We decompose the wall displacement field into its axi-
symmetric part and a small nonaxisymmetric perturbation by
writing vi =vs0disx1; td+evs1disx1,x2,td, wheree!1. As shown
in Sec. III B, the axisymmetric statevs0di evolves in time but
it evolves slowly, except during the very early stages of the
system’s evolution or whensand ifd it undergoes the final,
very rapid collapse. We wish to analyze the system’s stability
to nonaxisymmetric perturbations in the intermediate regime.
Therefore we determine the growth rate of the nonaxisym-
metric perturbations,vs1di, by a “frozen-coefficient” analysis
and write the nonaxisymmetric perturbations as

vs1d1sx1,x2,td = Vs1d1sx1dcossNx2dejt,

vs1d2sx1,x2,td = Vs1d2sx1dsinsNx2dejt, s29d

vs1d3sx1,x2,td = Vs1d3sx1dcossNx2dejt,

whereN is thesintegerd azimuthal wavenumber of the mode
with axial mode shapeVs1disx1d.

We apply equivalent perturbation to the film thickness
and the air-liquid interface curvature by writing

hs1dsx1,x2,td = hs0dsx1;td + eHs1dsx1dcossNx2dejt,

s30d
kh

s1dsx1,x2,td = kh
s0dsx1;td + eKs1dsx1dcossNx2dejt,

and determine the instantaneous growth ratesl=Resjd of
these modes for a givensfrozend axisymmetric solution
vs0disx1; td. Consistency of the variationsdvi in s3d with s29d
requires that

dv1 = cossNx2ddVs1d1sx1d,

dv2 = sinsNx2ddVs1d2sx1d, s31d

dv3 = cossNx2ddVs1d3sx1d,

wheredVs1di are arbitrary. With these expansions, Eqs.s12d
and s13d only have a trivialsand consistentd x2 dependence,
and the integration overx2 in s3d can be carried out analyti-
cally. We expand all terms ins3d, s12d, ands13d in powers of
e and, upon collecting the linear terms, we obtain a spatially
one-dimensional, linear eigenvalue problem for the mode
shapesVs1disx1d, Hs1dsx1d, and Ks1dsx1d. The coefficients in
this eigenvalue problem depend on the primary axisymmetric
solution which is only available numerically from the proce-
dure discussed in Sec. III B. Therefore we expand the mode
shapesVs1disx1d, Hs1dsx1d, andKs1dsx1d in the same finite el-
ement basess24d ands26d that we used for the discretization
of the axisymmetric problem. This transforms the continuous
problem into a discrete generalized eigenvalue problem of
the form

sA − jBdx = 0, s32d

whereA, B are sparse matrices, andx is the vector contain-
ing the degrees of freedom of the finite element expansion
for the mode shapes. The matrices have no special symme-

tries and we used the generalized non-Hermitian eigenvalue
routine nagInsymIgenIeigIall from the NAG library to com-
pute the eigenvalues and eigenvectors.

We validated the stability analysis by determining the
tube’s stability to nonaxisymmetric perturbations when
loaded by a constant external pressuresi.e., for s=0d. The
buckling pressures and the associated mode shapes for vari-
ous azimuthal and axial wavenumbers agreed with the pre-
dictions of Ref. 21 to within 1%. Furthermore, we compared
the growth rates of nonaxisymmetric, but axially uniform,
perturbations to the analytical predictions of Ref. 12. The
predictions for the growth rates agreed to within 2%. Finally,
we compared the predictions for the onset of nonaxisymmet-
ric instabilities with the numerical solution of the full non-
linear equations; see Sec. IV B.

2. Results

Figure 5 illustrates the stability of the evolving axisym-
metric configuration to nonaxisymmetric perturbations. The
figure was generated by the following procedure: starting
from the same initial conditions that we used for the simula-
tion shown in Fig. 3, wesredcomputed the system’s axisym-
metric evolution. At every time step, we evaluated the coef-
ficients of the eigenvalue problems32d and determined the
growth ratesl=Resjd for perturbations with various azi-
muthal wavenumbersN. Figure 5sad shows the largest instan-
taneous growth rateslsNd for nonaxisymmetric perturba-
tions with azimuthal wavenumbersN=2,3,4, as afunction
of time. Initially, all growth rates are negative and the system
is stable to nonaxisymmetric perturbations. As the axisym-
metric lobe develops, the tube’s compression increasesssee
Fig. 3d and att<480 the tube becomes unstable to nonaxi-
symmetric buckling in theN=3 mode. The axisymmetric
lobe continues to grow, increasing the compressive load on
the central part of the tube even further. This increases the
growth rate of the unstableN=3 mode while the growth rates
of all other modes remain negative.

Figure 6 shows a plot of the maximum growth ratel
against time for different values ofs. We only plot the value
of the growth rate when it is positive and all curves are for
the N=3 mode, as perturbations with other azimuthal wave-

FIG. 5. The maximum growth ratel against timet for the nonaxisymmetric
modesN=2,3,4. The system becomes unstable to nonaxisymmetric pertur-
bations in theN=3 mode att<480. s=100, H0=0.1, pinit =2.9, L=Î2ps1
−H0d.
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numbers decay. Ass decreases, the onset of the nonaxisym-
metric instability is delayed and its growth rate is reduced.
This is documented in more detail in Fig. 7 which shows
how the timetinstab, at which the system first becomes un-
stable to nonaxisymmetric perturbations, varies withs. The
figure suggests that the system will remain stable to nonaxi-
symmetric perturbations ifs is less than some critical value
smin. This quantity is of interest in the context of the airway
closure problem because, if the values ofpinit and H0 are
such that the airway cannot become occluded in its axisym-
metric state then airway closure is impossible ifs,smin.
sFor the values chosen here, the solid curves in Fig. 4 show
that this is indeed the case and Fig. 7 suggests thatsmin

&63d.
As discussed in Sec. III B, the wall compression in-

creases continuously as the fluid redistributes itself towards
its final axisymmetric equilibrium state in which its entire
volume is contained in a single lobe. For values ofs close to
smin, the main lobe has to be almost fully developed before
the wall compression is strong enough to cause buckling.
The evolution towards this final state takes place over ex-
tremely long time scales and the presence of the increasingly
thin neck region that connects the main and satellite lobes
requires the use of very fine spatial discretizations to fully
resolve the flow. Therefore it is not feasible to compute the
value ofsmin by continuing the procedure used to obtain the

data shown in Fig. 7 to smaller and smaller values ofs.
Furthermore, the nonaxisymmetric instability needs to de-
velop over time scales that are comparable to the period
Tbreath of the breathing cycle if it is to be of relevance in the
context of the airway closure problem. The estimates for
physiological the parameter values discussed in Sec. V, show
that the maximum nondimensional time oft= t* / sm /Kd
=2.23104 in Fig. 7 corresponds to a dimensional value of
267 s which is much greater thanTbreath. The valuesmin

<63 therefore presents a useful upper limit for the nondi-
mensional surface tension below which airway closure can-
not occur for the given values ofH0 andpinit. sA lower limit
of smin<10 can be derived by analyzing the static stability
of the ultimate axisymmetric equilibrium state to nonaxisym-
metric perturbations; see Appendix Bd.

A decrease in the initial pressurepinit has a similar effect
to a decrease ins. The onset of the nonaxisymmetric insta-
bility is delayed and its growth rate decreases. Again, there is
a critical value ofpinit below which the system does not
become unstable to nonaxisymmetric perturbations. Figure 8
provides a summary of these results. A marker indicates a
parameter combinationspinit ,sd for which the system be-
comes unstable to nonaxisymmetric perturbations at some
point during its axisymmetric evolutionfthe simulations
were again carried out in the range 0, t* / sm /Kd,2.2
3104g. For initial pressures in the rangepinit .3, the tube is
unstable to axially uniform buckling in theN=2 mode;12 in
these cases the axisymmetric redistribution of fluid is not
required to initiate the nonaxisymmetric instability. For val-
ues of the initial pressure in the rangepinit ,3, the system
first becomes unstable to buckling in theN=3 mode. The
critical surface tensionsmin decreases with increasingpinit.
At larger values ofpinit, nonaxisymmetric perturbations with
wavenumbersN=2 andN=4 also become unstable but, for a
given combination ofpinit and s, the N=3 mode is always
the first to become unstable; see Fig. 13 below.

A decrease in the initial film thicknessH0 sat constant
pinitd decreases the growth rate of the primary axisymmetric

FIG. 6. The positive growth ratesl of perturbations with azimuthal wave-
numberN=3 against timet for different values of the surface tensions.
pinit =2.9, H0=0.1, L=Î2ps1−H0d.

FIG. 7. The time at which the system becomes unstable to nonaxisymmetric
perturbations as a function of the surface tensions. pinit =2.9, H0=0.1, L
=Î2ps1−H0d.

FIG. 8. The parameter valuespinit, s for which the system becomes unstable
to nonaxisymmetric perturbations with azimuthal wavenumberN during the
period 0, t* / sm /Kd,2.23104. H0=0.1, L=Î2ps1−H0d.
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instability fsee Eq.s22dg, causing slower growths of the main
lobe and the compression of the tube wall. Hence a decrease
in H0 delays the onset of the nonaxisymmetric instability and
reduces its growth rate; for an illustration see Fig. 14 below.

Finally, we discuss the effect of variations in the domain
length L. Thus far we have always assumed that the axial
wavelengthLs=2Ld of the nonaxisymmetric instability is
identical to that of the fastest growing axisymmetric mode. If
we shorten the computational domain, the axisymmetric in-
stability develops with thessmallerd growth rate of the fastest
growing axisymmetric mode that “fits” into this domain, as
predicted bys22d. Therefore, the onset of the nonaxisymmet-
ric instability is delayed and its growth rate decreases; ulti-

mately, whenL,2ps1+V0−H̃0d even the axisymmetric in-
stability is suppressed. In that case, nonaxisymmetric
instabilities only occur forpinit .3. For axial wavelengths in
the rangeL.Lmax, the axisymmetric instability initially
grows at a rate less thanvmax, causing the wall compression
to increase more slowly. However, in the large-displacement
regime, the main lobe can recruit more fluid from the satel-
lite lobe. This allows the main lobe to grow more quickly.
Overall, the nonaxisymmetric instability occurs slightly ear-
lier and its growth rate increases slightly withL. An example
of this is shown in Fig. 15 below.

B. Numerical simulation in the nonlinear regime

The linear stability analysis presented in the preceding
section showed that the wall compression induced by the
primary axisymmetric instability can initiate the nonaxisym-
metric buckling of the airway wall. We will now follow the
growth of this secondary instability into the nonlinear, large-
displacement regime to determine whether the initialssmall-
amplituded buckling of the airway wall can result in airway
closure.

1. Discretization

The coupled discretization of the two-dimensional shell
and lubrication theory equationss1d ands12d was performed
by the same method that we employed in Sec. III B for the
axisymmetric equations. The one-dimensional Hermite ele-
ments were replaced by isoparametric quadrilateral Hermite
elements22,23and the computational domainscovering half of
one lobe, as indicated by the wire mesh in Fig. 1d was typi-
cally discretized with 10310 elements. The code was vali-
dated by computing the large-displacement postbuckling de-
formation of a finite-length tube with clamped ends, loaded
by a constant external pressure, and comparing the results
against the predictions from existing, independent codes.23,24

Furthermore, we compared the results from the fully coupled
code against the predictions from the linear stability analysis
ssee belowd and against preliminary results from a full
Navier-Stokes simulation of the problem; see Fig. 16 in Ap-
pendix A.

2. Results

Figure 9 shows the evolution of the eight control radii
R1, . . . ,R4 and Rh1, . . . ,Rh4 for the same parameter values
that we used in Fig. 5. One-sixth of the domain was dis-

cretized and a small pressure perturbation of the form
ep coss3x2d with ep=10−4 was added to the load vectorf to
initiate the controlled development of the nonaxisymmetric
instability. Figure 9 shows the initial development of the axi-
symmetric instability which manifests itself by a decrease in
Rh1<Rh2 while Rh3<Rh4 increase; there are corresponding
sbut much smallerd changes in the wall control radii
R1, . . . ,R4; see also the 3D plots of the wall and air-liquid
interfaces shown in Fig. 10.

The inset in Fig. 9sad shows a closeup of the evolution of
the wall control radii in the vicinity oft=480—the time be-
yond which thesfrozen-coefficientd linear stability analysis
predicted positive growth rates for nonaxisymmetric pertur-
bations withN=3 azimuthal wavessthis time is also indi-
cated by the markerd. The inset indicates that the difference
between the wall control radiiR1 andR2 does indeed begin
to grow exponentially at approximately this time. The non-
axisymmetric collapse remains localized and buckling only
occurs in the vicinity of the main lobe—the cross section at
x=L remains approximately axisymmetric,R3<R4; see also
Fig. 10.

The contours in Fig. 11 illustrate the evolution of the
normal component,fn=pext−skh, of the load that acts on the
wall. Initially, the wall is strongly compressed in the vicinity
of the main lobe and inflated in the vicinity of the satellite
lobe. As the wall begins to buckle nonaxisymmetrically, the
pressure distribution in the region of the main lobe becomes
highly nonuniform. The curvature of the air-liquid interface

FIG. 9. sad The tube wall control radiiR1, . . . ,R4 andsbd fluid control radii
Rh1, . . . ,Rh4 against time. Att<480, the tube begins to buckle nonaxisym-
metrically in theN=3 mode. Att<640, the system undergoes a rapid non-
axisymmetric collapse. Inset: The wall control radiiR1, . . . ,R4 against time
as the tube wall begins to buckle nonaxisymmetrically. The markers indicate
the time at which the linear analysis predicts instability to nonaxisymmetric
perturbations.s=100,pinit =2.9, H0=0.1, L=Î2ps1−H0d.
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becomes moreslessd negative in regions in which the wall
buckles outwardssinwardsd. Since p=skh, this creates a
fluid pressure gradient that drives azimuthal flows which at-
tempt to return the air-liquid interface to an axisymmetric
shape. Indeed, Fig. 10 shows that while the wall buckles
strongly, the air-liquid interface remains nearly axisymmet-
ric, Rh1<Rh2 andRh3<Rh4. The azimuthal variations to the
fluid pressure oppose the nonaxisymmetric wall deforma-
tions, as regions of the wall that buckle outwards are pulled
inwards and vice versa. Compared to the case of a “dead”
loading, the surface-tension-induced component of the load
on the wall is therefore stabilizing and reduces the growth
rate of the nonaxisymmetric instability. This effect was first
reported in Ref. 12 for axially uniform instabilities.

As the nonaxisymmetric collapse increases, the small
fluid pressure in the main lobe continues to drain fluid from
the satellite lobe. Furthermore, the nonaxisymmetric buck-
ling reduces the cross-sectional area of the most strongly
collapsed cross section. These two effects continually reduce
the radius of the air-liquid interface and cause a further in-
crease in the compressive load on the wall in this region.
Ultimately, this destabilizing feedback initiates a rapid non-
axisymmetric collapse of the tube and the air-liquid interface
at t<640. As in the axisymmetric case, the numerical simu-
lation can only follow the compliant collapse up to a certain
point. This is because the smaller and smaller time steps,
required to resolve the extremely rapid collapse, ultimately
cause numerical problems which result in the failure of the

FIG. 10. The wall and air-liquid inter-
face shapes at different timessad t=0,
sbd t=345, scd t=480, andsdd t=643.
The tube buckles nonaxisymmetrically
in the N=3 mode. H0=0.1, s=100,
pinit =2.9.

FIG. 11. Contour plots of the normal
component of the loadfn=pext−skh

acting on the tube forsad t=0, sbd t
=345, scd t=480, andsdd t=643. Note
that the contour scales are different in
each plot.
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Newton method to converge. However, full Navier–Stokes
simulations of this problem for the same parameter values
ssee Fig. 16 in Appendix Ad show that the system does in-
deed evolve towards a completely occluded state. This dem-
onstrates that nonaxisymmetric instabilities allow the occur-
rence of airway closure in regions of parameter space in
which axisymmetric models predict the airway to remain un-
occludedscf. Fig. 4d.

Figure 12 illustrates the effect of variations in the non-
dimensional surface tensions on the system’s evolution in
the large-displacement regime. For the parameter values cho-
sen here, the linear stability analysis of Sec. IV A predicted
an upper limit ofsmin<63 for the minimum surface tension
required for the nonaxisymmetric instability to occur. Figure
12 shows that the wall and the air-liquid interface do indeed
remain axisymmetric fors=50 fthe simulation was contin-
ued until t= t* / sm /Kd=5.03104 and the small nonaxisym-
metric perturbation induced byep did not growg. For s=70
.smin, the system becomes unstable to nonaxisymmetric
perturbations attinstab<3.63103 and the final rapid collapse
occurs attcollapse<4.73103. A further increase ins reduces
the time tinstab at which the system becomes unstable to
small-amplitude nonaxisymmetric perturbations, as predicted
by the results of the linear analysis in Fig. 7. Furthermore,
the delay between the onset of the linear instability and the
final catastrophic collapse decreases with an increase ins.
For instance, in Fig. 12,tinstab− tcollapse<1.13103 for s=70
and tinstab− tcollapse<3.53102 for s=80. This is caused by
two effects:sid For a given shape of the axisymmetric lobe,
an increase ins increases the additional wall compression;

sii d an increase ins leads to a more rapid development of the
primary axisymmetric instability; see Fig. 4. The combina-
tion of these effects implies that at largers, less time is
required to reach the level of compression that is necessary
to trigger first the nonaxisymmetric instability and then the
ultimate catastrophic collapse. In all our simulations, the
growth of small-amplitude, nonaxisymmetric perturbations
ultimately led to nonaxisymmetric compliant collapse at a
later time.

The linear stability analysis of Sec. IV A predicted that,
at larger values of the surface tension, the system should
become unstable to nonaxisymmetric perturbations in mul-
tiple modesssee, e.g., Fig. 8d. An example of this is shown in
Fig. 13 which illustrates the system’s evolution in the large-
displacement regime when the tube is subjected to perturba-
tions with azimuthal wavenumbersN=3 andN=4, respec-
tively sin the latter case, only one-eighth of the domain was
discretized to accommodate perturbations with this wave-
numberd. The axisymmetric system is predicted to become
unstable to perturbations with wavenumberN=3 at t<190
and it undergoes a rapid nonaxisymmetric collapse att
<246. For anN=4 perturbation, the linear instability is pre-
dicted to occur at the later time oft<321 and the ultimate
collapse only occurs att<365. We would therefore not ex-
pect to observe theN=4 instability in practice.

The effect of an increase in the initial film thicknessH0,
illustrated in Fig. 14, is similar to that of an increase ins.
For larger values ofH0, the curvature of the air-liquid inter-
face, and with it the wall compression, increases more rap-
idly. This causes the earlier onset of the nonaxisymmetric

FIG. 12. sad The wall control radiiR1, . . . ,R4 andsbd the air-liquid interface
control radiiRh1, . . . ,Rh4 for different values of the nondimensional surface
tensions. The tube buckles in theN=3 mode in all cases. The markers
indicate the time at which the linear analysis predicts instability to nonaxi-
symmetric perturbations.H0=0.1, pinit =2.9, L=Î2ps1−H0d.

FIG. 13. sad The wall radii R1, . . . ,R4 and sbd the air-liquid interface radii
Rh1, . . . ,Rh4 for instabilities with azimuthal wavenumbersN=3 andN=4.
The markers indicate the time at which the linear analysis predicts instability
to nonaxisymmetric perturbations.s=170,H0=0.1, L=Î2ps1−H0d.
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instability sas predicted in Sec. IV Ad and reduces the delay
until the subsequent final collapse. Conversely, a reduction in
H0 delays the onset of the instability and the analysis pre-
sented in Appendix B shows that for a given value of the
surface tension, there exists a critical film thickness below
which the airway will remain open.

Figure 15 illustrates the effect of variations in the axial
wavelengthL of the nonaxisymmetric instability. As dis-
cussed in Sec. III, an increase inL beyondLmax=2Î2ps1
−H0d reduces the initial growth rate of the axisymmetric in-
stability but leads to faster growth in the nonlinear regime.
Figure 15 confirms that the perturbation withL=L /2
=1.9ps1−H0d initially grows much more slowly than that
with L=L /2=1.6ps1−H0d, causing the instability to nonaxi-
symmetric perturbations to occur att<420, as opposed to
t<400. However, in the large-displacement regime, the per-
turbation with the larger wavelength grows much more
quickly and for both wavelengths, the ultimate collapse oc-
curs at approximately the same timet<488, much earlier
than for the initially fastest growing mode.

Finally, we discuss the effect of variations in the wall
stiffnessK. For given values of the dimensional surface ten-
sions* , the film thicknessH0, and the external pressurepext

* ,
the primary effect of a reduction inK scorresponding to a
weakening of the airway wallsd is an increase in the nondi-
mensional surface tensions and the initial loadpinit. This
makes the airway more susceptible to buckling instabilities.
When we analyzed the effect of variations ins on the sys-
tem’s postbuckling behavior, we havesso fard always asso-
ciated changes ins with changes in the dimensional surface

tensions* . An increase in the nondimensional surface ten-
sion s via a reduction in wall stiffness has two competing
effects. While the increase ins leads a faster growth of the
instabilities on the time-scaleT=m /K ssee Figs. 2, 7, and
12d, the time-scaleT itself increases as well. Rescaling our
results onto the bending-stiffness-independent time-scale
Tvisc=sT shows that an increase ins via a reduction inK
still leads to an overall increase in the growth rates of the
primary and secondary instabilities.

V. SUMMARY AND DISCUSSION

Motivated by the problem of pulmonary airway closure,
we have studied three-dimensional nonaxisymmetric insta-
bilities of liquid-lined elastic tubes. The system’s evolution is
driven by gradients in its total potential energyscomprising
the strain energy stored in the elastic wall and the surface
energy stored in the air-liquid interfaced. Hence static analy-
ses, such as those in Refs. 10, 11, 13, and 14 can identify the
system’sspossibly multipled equilibrium configurations and
their stability to quasisteady, small-amplitude perturbations.
However, only dynamic analyses, such as the one performed
here, can determine which of these equilibrium configura-
tions can be realized via a continuous evolution from a given
initial state. Furthermore, dynamic analyses are required to
establish the time scales over which any instabilities develop.
Appendix B shows that, in the present problem, a quasistatic
stability analysis leads to unrealistically small values of the
surface tensionsmin required for airway closure to occur.

We have shown that the additional wall compression in-
duced by a primary, axisymmetric fluid-elastic instability can

FIG. 14. Radius of control points forH0=0.09,H0=0.1, andH0=0.11. The
markers indicate the time at which the linear analysis predicts instability to
nonaxisymmetric perturbations. In all casesL=Î2ps1−H0d, s=100, pinit

=2.9.

FIG. 15. sad The wall control radiiR1, . . . ,R4 andsbd the air-liquid interface
control radiiRh1, . . . ,Rh4 for different values of the tube lengthL. The tube
buckles nonaxisymmetrically in theN=3 mode in all cases.H0=0.1, pinit

=2.9, s=100.
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initiate the nonaxisymmetric buckling of a liquid-lined air-
way and that the nonlinear growth of this secondary instabil-
ity can initiate a compliant collapse. Our simulations demon-
strate that the nonaxisymmetric instability mechanism allows
the occurrence of airway closure at fluid volumes that are too
small to occlude an airway in its axisymmetric state. Further-
more, even in cases in which the surface tension and the
initial film thickness are large enough to allow the occur-
rence of airway closure by the axisymmetric instability
mechanism, nonaxisymmetric instabilities will cause airway
closure at much earlier times. For instance, forH0=0.1, s
=520, Fig. 4, predicts axisymmetric airway closure to occur
at t* / sm /Kd<1.143103. The analysis of Sec. IV A predicts
that the evolving system will become linearly unstable to
nonaxisymmetric perturbations attinstab<37.5 and the nu-
merical simulation of the nonlinear evolution shows that
nonaxisymmetric airway closure occurs attcollapse<58.7,
long before an axisymmetric occlusion forms.

To assess the significance of our results in the physi-
ological context, we use Halpern and Grotberg’s7 estimates
for the parameter values in the terminal bronchioli, namely,
R0=250mm, s* =20 dynes/cm, m=10−3 kg/sm sd, E=6
3104 dynes/cm2, n=0.49, and h/R0=1/10. This corre-
sponds to a nondimensional surface tension ofs=120 and
time scale ofT=m /K=1.5310−3 s. Hence the simulations
presented in the previous sections were performed with
physiologically relevant parameter values. Moreover, airway
closure by the 3D instability mechanism occurs over time
scales that are shorter thansor comparable tod the period of
the breathing cycle. For instance, for the parameter estimates
listed above, the dimensional time from the start of the simu-
lation to the ultimate collapse ist= t* / sm /Kd<310 which
corresponds to a dimensional closure time of<0.47 s.

Our results are consistent with clinical observations
since they show the susceptibility to airway closure to be
enhanced by an increase in surface tensionse.g., in respira-
tory distress syndromed, by an increase in the initial thick-
ness of the liquid liningse.g., in pulmonary edemad, and by a
structural weakening of the airway walls. All three effects
cause an increase in the initial compression of the airway and
thus render the wall more liable to buckling instabilities. Ad-
ditionally, these effects lead to a much faster growth of the
nonaxisymmetric instabilities when they develop.

The film thicknesses used in the simulations presented
here are larger than those typically encountered in the axially
uniform liquid lining of a healthy lungssee, e.g., Ref. 25d.
We expect the results presented in this study to be mainly
applicable to situations in which diseases such as edema
have led a noticeable thickening of the liquid lining. This is
because, even though the nonaxisymmetric instabilities also
develop at much smaller film thicknesses, the time scale for
their growth becomes much larger than the period of the
breathing cycle. The development of the instability is there-
fore likely to be affected by the periodic expansion and con-
traction of the airways, an effect that we have neglected in
our model.

In an attempt to keep our theoretical model as simple as
possible, we have only incorporated those physical effects
that we believe to be of primary importance for the develop-

ment of the nonaxisymmetric instabilities. We have ignored
the presence of surfactants and have assumed that the surface
tensions* remains constant. Reduced surfactant production
in the lung is known to cause severe respiratory problems
se.g., in neonatal respiratory distress syndromed and within
the framework of our model this can be attributed to the
global increase in surface tension which was shown to facili-
tate the occurrence of airway closure. The presence of sur-
factant also affects the dynamics of surface-tension-driven
flows and this effect has not been included in our model.
Halpern and Grotberg26 showed that, in their axisymmetric
model, the presence of surfactant reduces the growth rate of
the primary axisymmetric instability, which would delay the
onset of the secondary instability and therefore be likely to
increase the time to closure.

Our model ignored the effect of van der Waals forces
which may be important in regions in which the film thick-
ness becomes very small. As discussed in Sec. III, film rup-
ture during the evolution of the primary axisymmetric insta-
bility would stop the draining flows from the satellite to the
main lobe. This would lead to an axisymmetric equilibrium
state with multiple static lobes, separated by “dry” regions.
The volume of fluid contained in the lobes would depend on
the precise moment at which film rupture occurred. It is more
difficult to anticipate the effect of film rupture during the
evolution of the nonaxisymmetric instability. Initially, the
film would only rupture at isolated points and rupture would
not necessarily cause the breakup of the film into multiple
disconnected regions. While the incorporation of van der
Waals forces into our model would be relatively straightfor-
ward, it is not clear if this would genuinely improve the
description of the physics involved in the airway closure
problem. We believe that the detailed topology of the airway
wall swhich does not have a smooth surface as assumed hered
would begin to affect the fluid flow long before van der
Waals forces become important.

Our model of the airway wall neglected its multilayer
internal structure,27 its viscoelastic behavior, and the effects
of external tethering. These effects will influence the param-
eter values for which airway closure can occur and the time
scale over which it develops. Nevertheless, we believe that
none of these effects will be able to completely suppress the
airway closure mechanism analyzed here. Once the radius of
the air-liquid interface has been reduced sufficientlyspossi-
bly by applying a relatively larger external pressure to over-
come the additional stiffness provided by the external tether-
ingd, the rapid increase in the pressure jump over the highly
curved air-liquid interface cannot possibly be balanced by
any of these restoringsor retardingd forces.

The external tethering and the multilayer structure of the
airway wall could, however, lead to a change in the most
unstable azimuthal wavenumberN. References 27 and 28
demonstratedsin two-dimensional geometriesd that both ef-
fects tend to cause an increase inN, and physiological
observations29 do indeed suggest that airways buckle with
larger wavenumbers than predicted by our model.

Finally, we note that our analysis was performed with
periodic boundary conditions whereas the bronchial airways
branch frequently. Our simulations predict airway closure to
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occur in a highly localized fashionstypically, the buckling
region extends over two to three airway diametersd. Hence, if
the occlusion develops in the central part of an individual
airway, the support provided by the bifurcations is unlikely
to have a major effect on the instability discussed here.

ACKNOWLEDGMENTS

Financial support from the EPSRC for a Project Student-
ship for J.P.W. and an Advanced Fellowship for M.H. is
gratefully acknowledged. The authors also wish to thank Dr.
Andrew Hazel for many helpful discussions. The HSL li-
brary routine HSLIMA42 sa frontal solver for sparse, unsym-
metric systems19d was used in this work.

APPENDIX A: VALIDATION AND COMPARISON
WITH 3D STOKES FLOW SIMULATIONS

Figure 16 shows the evolution of the control radii for the
same parameter values that were used in Fig. 9. The solid
lines represent the results obtained from the lubrication
theory models12d while the dotted lines were obtained from
a full 3D Stokes flow simulationsperformed by Hazel and
Heil; see Ref. 20 for further details of the comparisond. Even
though the initial film thicknessH0=0.1 is rather largesby
the standards of “classical” lubrication theoryd, the use of the
exact nonlinear expressions forM andkh in Eq. s12d ensures
that the agreement with the full Stokes flow simulation is
very good. The two simulations only differ significantly in
their predictions of the timetcollapse at which the final cata-
strophic collapse occurs. While the occurrencesor nonoccur-
renced of the nonaxisymmetric compliant collapse can be
predicted with either code, the precise value oftcollapseis very

sensitive to slight changes in the load on the wall. The slight
differences between the fluid tractions predicted by the lubri-
cation theory model and the full Stokes equations duringt
, tcollapse are therefore sufficient to delay the occurrence of
the final collapse in the Stokes flow simulation by a finite
amount.

Figure 16 also shows the predictions obtained from the
classical lubrication theory model in which the expressions
for kh andM in s12d were linearized with respect to the wall
displacements and the film thickness. This model already
provides a poor description of the system’s axisymmetric
evolution and completely fails to capture the nonaxisymmet-
ric instability and the ultimate collapse.

APPENDIX B: A LOWER BOUND FOR smin

In Sec. IV A we definedsmin as the value of the nondi-
mensional surface tension, below which the airway never
becomes unstable to nonaxisymmetric perturbations. We de-
termined an upper limit ofsmin<63 sfor H0=0.1 andpinit

=2.9d by monitoring the stability of the evolving axisymmet-
ric configuration up to a time oft= t* / sm /Kd=2.23104.
Even after such large times, the system continues to evolve
and the curvature of the air-liquid interface continues to in-
crease, albeit very slowly, in the region of the main lobe.
Therefore, at even larger times, nonaxisymmetric instabilities
may still occur at smaller values ofs.

We will now derive a lower limit forsmin by investigat-
ing the sstaticd stability of the system’s final axisymmetric
equilibrium configurations to nonaxisymmetric perturba-
tions. As t→`, the satellite lobe completely drains into the
main lobe whose air-liquid interface adopts a shape of con-
stant curvature,kund. The main lobe only wets the wall over
a finite lengthLund,L. We assume that the air-liquid inter-
face joins the dry wall at zero contact angle and neglect the
effect of the small axisymmetric wall deformations on the
air-liquid interface shape. Figure 17 illustrates the possible
axisymmetric equilibrium configurations that a liquid film of
initial thicknessH0 can evolve towards when it is subjected
to an initial perturbation with axial wavelengthL.

Figure 18 shows the interface curvaturekund and the
axial length Lund of these equilibrium configurations as a
function of the wavelengthL, for a film of initial thickness
H0=0.1. Curve I represents the uniform liquid filmfof con-
stant curvaturekund=−1/s1−H0d and lengthLund=Lg. This
configuration becomes unstable beyond point A, whenL
.2ps1−H0d. Curve II shows the curvature and length of an
unduloid-shaped air-liquid interface that encloses the same
volume of fluid as the uniform liquid filmssee Ref. 2d. For a
range of wavelengths, two different unduloids exist. At the
lower end of this curvespoint Cd, the unduloid degenerates
into a minimal occluding liquid bridgesof curvature
kund=−2 and lengthLund=2; state III in Fig. 17d. For L
.2/3H0s2−H0d, curve III in Fig. 18 represents occluding
liquid bridges of finite thickness.

Everett and Haynes2 determined the stability of these
equilibria to constant-volume perturbations by considering
the “effective area” of the various configurations. In Fig. 18
markers indicate configurations that are stable to small am-

FIG. 16. Comparison of lubrication theory, using the full nonlinear expres-
sions forM and kh, Stokes flow, and classical lubrication theory with lin-
earized expressions forkh andM. H0=0.1, pinit =2.9, s=100.
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plitude perturbations. In a certain range of wavelengths
s7.65,L,9.17d, identified by the hollow markers, the oc-
cluding liquid bridge configuration has a smaller effective
area than the correspondingsmetastabled unduloid but finite
amplitude perturbations are required to allow a continuous
transition between these two states. ForL.9.17, the undu-
loid no longer exists and the only nontrivial equilibrium state
is the occluding liquid bridge.

The thin lines in Fig. 19 show the same curves as in Fig.
18 for a number of different initial film thicknessesH0 sfor
clarity only the unduloid branch II is shownd. The thick line,
E, indicates parameter combinations for whichL=2Î2ps1
−H0d and thus identifies the possible final equilibrium con-
figurations for axisymmetric instabilities that originate from
the fastest growing perturbation to the initial, uniform state.
The dotted parts of the curve represent unstable equilibria.

For thin films, 0,H0,0.117, the fastest growing per-
turbation to the uniform film will evolve towards an undu-
loid. The occluding liquid bridge represents a possible equi-
librium state for H0.0.04, but it is stable only forH0

.0.095. Furthermore, it can only be realized in a continuous
evolution from the axially uniform state forH0.0.117.
Films of greater thickness evolve towards stable occluding
liquid bridges of increasing thickness.

When the axisymmetric instability has evolved towards
its final, stable equilibrium state, the load on the axisymmet-
ric wall is therefore given by

FIG. 17. Sketch of the possible axisymmetric equilibrium configurations.sId
A uniform liquid film; sII d a finite-length unduloid;sIII d an occluding liquid
bridge; shown here as a minimal liquid bridge.

FIG. 18. sad Curvaturekund andsbd lengthLund of the equilibrium configu-
rations that have the same volume of fluid as a uniform liquid film of initial
thicknessH0=0.1 andswavedlength L. The markers insbd indicate stable
equilibria; hollow markers indicate metastable states.

FIG. 19. The thin lines showsad the curvaturekund and sbd the lengthLund

of the unduloid that develops when a uniform liquid film of initial thickness
H0 undergoes an axisymmetric instability of wavelengthL. The thick lineE
indicates parameter combinations for whichL=2Î2ps1−H0d and thus cor-
responds to configurations that develop from the fastest growing perturba-
tion to the initially uniform liquid film. The solid and dotted parts of this
curve indicate stable and unstable configurations.

031506-15 Three-dimensional instabilities Phys. Fluids 17, 031506 ~2005!

Downloaded 25 Aug 2005 to 130.88.16.108. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



f = H− spext− skunddN if 0 ø ux1u ø Lund,

− pextN if Lund, ux1u ø L,
J sB1d

where, for a given value ofH0, the values ofLund andkund

are given by the solid part of the lineE in Fig. 19.
We insert thissstaticd load into s1d and investigate the

stability of the wall’s axisymmetric state by the procedure
described in Sec. IV A. In the present case, the governing
equations have no time dependence, therefore the finite ele-
ment discretization of theOsed equations yields a standard
eigenvalue problem of the formAx =0. The condition for
instability, detsAd=0, establishes the values ofs for which
the axisymmetric equilibrium state becomes unstable to non-
axisymmetric perturbations of a given azimuthal wavenum-
berN. We regard the smallest value ofs as a lower limit for
smin.

Figure 20 illustrates the dependence ofsmin on the value
of the initial thicknessH0 and the initial pressurepinit. In all
cases,N=3 represented the most unstable azimuthal wave-
number. For small values ofH0 the axisymmetric perturba-
tion evolves towards an unduloid of small negative curva-
ture. Hence, relatively large surface tensions are required to
cause nonaxisymmetric buckling. As the film thickness is
increased,kund becomes more negativessee Fig. 19d, causing
smin to decrease.

The stable occluding liquid bridge configurations that
exist onceH0.0.095 have a large negative curvature of
kund=−2. In this configuration, only very small surface ten-
sions ofsmin<10 are required to cause the buckling of the
airway wall. These values ofsmin are consistent with those
obtained in Ref. 11 where only buckling in theN=2 mode
was considered. An increase inH0 increases the length,Lund,
over which the occluding liquid bridges wet the wall and
expose it to their compressive load; see Fig. 19sbd. This leads
to a slight reduction insmin with a further increase inH0. An
increase inpinit decreases the value ofsmin because the load
on the tube depends linearly on the external pressure.

Finally, we note that, for a given value of the surface
tension s, the lines in Fig. 20 can also be interpreted as
predictions of the minimum film thicknessH0 required for
nonaxisymmetric airway closure to be possible.

APPENDIX C: COMPARISON WITH HALPERN AND
GROTBERG

In this appendix, we provide a more detailed comparison
between the results presented in Sec. III and those obtained
previously by Halpern and GrotbergsHGd in their study of
axisymmetric airway closure.7 HG’s wall model incorporated
the effects of axial prestress, wall damping, and azimuthal
shoopd stress. In an attempt to keep our model as simple as
possible, the first two of these effects were ignored in our
study. HG’s wall-stiffness parameterG can be related to the
nondimensional surface tensions via G<1/12shw/R0d2s.
The values ofs used in our study are at the lowsand physi-
ologically appropriated end of the range explored in HG’s
study and in this regime HG’s analysis agrees with the re-
sults presented in Sec. III: wall elasticity leads to a small
increase in the growth rates of the axisymmetric instability
ssee, e.g., HG’s Fig. 6 forG=0.1 which corresponds tos
<120d. The infinite growth rates that HG predicted for cer-
tain finite-wavelength perturbation at zero wall damping,
only occur at largesand, in the context of the physiological
problem, probably somewhat unrealisticd values ofG.

Direct comparisons between the finite-amplitude simula-
tions are difficult because HG only provide detailed illustra-
tions of the nonlinear evolution for cases with large wall
damping. While this precludes direct comparisons, Fig. 9 in
their paper shows that the rapid ultimate snap-off towards an
axisymmetric occlusion occurs if and when the Rayleigh in-
stability reduces the minimum radius of the air-liquid inter-
face toRmin<0.5. This is consistent with the results shown in
Fig. 4 in the present paper.
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