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Three-dimensional instabilities of liquid-lined elastic tubes: A thin-film
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We develop a theoretical model of surface-tension-driven, three-dimensional instabilities of
liquid-lined elastic tubes—a model for pulmonary airway closure. The model is based on
large-displacement shell theory, coupled to the equations of lubrication theory, modified to ensure
the exact representation of the system’s equilibrium configurations. The liquid film that lines the
initially uniform, axisymmetric tube can become unstable to a surface-tension-driven instability. We
show that, if the surface tension of the liquid lining is sufficiently lafgelative to the tube’s
bending stiffness the axisymmetric redistribution of fluid by this instability can increase the wall
compression to such an extent that the system becomes unstable to a secondary, nonaxisymmetric
instability which causes the tube wall to buckle. We establish the conditions for the occurrence of
the nonaxisymmetric instability by a linear stability analysis and use finite element simulations to
explore the system’s subsequent evolution in the large-displacement regime. The simulations show
that nonaxisymmetric instabilities allow the formation of occluding liquid bridges in situations in
which the volume of fluid is insufficient to occlude the tube in its axisymmetric state. Finally, we
discuss the implications of our results for the physiological problem of pulmonary airway
closure. ©2005 American Institute of PhysidDOI: 10.1063/1.1862631

I. INTRODUCTION Over the past decade, a number of increasingly sophis-
ticated theoretical models of pulmonary airway closure have

The pulmonary airways are coated with a thin liquid film
P y Y a Been developed in the literature. One of the key objectives

that serves many useful functions, such as trapping inhaleh b he d S t th - | ¢ fluid
particles and protecting the underlying cells from dry’mg. as _eent € etermmatlo_n 0 _t € minimum volume of flul
The liquid lining can become unstable to the surface—tensionr—equ'red to form an occluding liquid bridge. Following early

. . P 5
driven Rayleigh-Plateau instabiff§7 which initiates the re- Work on the Rayleégh—Plateag instability in rigid tubes;
distribution of fluid into axisymmetric lobes. If the film Kamm and Schrotéwere the first to consider the effects of

thickness is sufficiently large, the instability can result in theWall €lasticity on puimonary airway closure. They introduced

occlusion of the airway with a liquid bridge—a phenomenont® concepts of *film collapse” and “compliant collapse” to
known as airway closur®. describe airway closure caused by the classical Rayleigh—

In the smaller airways, surface tension creates a |argglateau instability and by the surface-tension-driven collapse

pressure jump over the highly curved air-liquid interface®f the airway wall, respectively. Halpern and Grottfeiny

which causes a strong compression of the elastic airwayest!gated the interaction betvyeen these two r.nechanlsm's and
tudied the occurrence of airway closure via a combined

walls. The resulting wall deformation reduces the radius of

the air-liquid interface and thus facilitates the occurrence of Uid-élastic instability. They showed that wall elasticity sig-
airway closurd 8 nificantly reduces the volume of fluid required to occlude an

In the lungs of a healthy individual, airway closure only axisymmeltric. airway. Their study_ also indica@ed th.a_t the
occurs in the small airways and at the end of expiration whelfomPression induced by the Rayleigh-Plateau instability can
the airway radii are smallest and hence the liquid lining isC@US€ large axisymmetric airway-wall deformations.
thickest. The occluding liquid bridges usually rupture during Motivated by the observation that strongly compressed,

the early stages of inspiration, a process that gives rise tgyli_rl%irlilc.al tubes tend to buckle nonaxisymmetrically,
characteristic “crackling” noises. In many pulmonary dis- Heil""“investigated the static stability of thin-walled, elastic

eases, the susceptibility to airway closure is enhanced arfyPes that are occluded by liquid bridges. He showed that the

occluding liquid bridges may form in larger airways and per_compressive load that a liquid bridge exerts_on the a_irway
sist for larger fractions of the breathing cycle. In extreme'Vall can be strong enough to cause its nonaxisymmetric col-

cases, the airways can remain occluded and this can lead f8PSe: Furthermore, he showed that the volume of fluid re-

severe respiratory problem@.g., the respiratory distress quired to occlude a nonaxisymmetrically buckled airway is
syndrome. much smaller than that required to occlude it in its axisym-

metric state.
Electronic mall: jwhite@maths.man ac.uk In the context of the airway closure problem, the mere

bAuthor to whom correspondence should be addressed. Electronic mai€Xistence of occluding ”qUiq bridges of small Vqlume dqes
M.Heil@maths.man.ac.uk not ensure that such occlusions can be formed via a continu-
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ous evolution from an initial state in which a uniform liquid
film lines the axisymmetric airway wall. The dynamic tran-
sition from an axisymmetriéand unoccludexdinitial state to
a nonaxisymmetrically occluded configuration was first con-
sidered by Heil and Whité who studied the dynamic stabil-
ity of liquid-lined, elastic rings to nonaxisymmetric pertur-
bations (the analysis also applies to the axially uniform
deformation of finite-length tubgsTheir study showed that

FIG. 1. Sketch of the model problem: A thin-walled elastic tube lined with

a IIqUId_II_nEd _I’Ing IS Ilnearly .unStabIe to nonaXISymmemCa liquid film. The tube buckles nonaxisymmetrically Mazimuthal lobes
perturbations if the compressive load created by the combis

and with an axial wavelength =2L. Also shown are the Lagrangian coor-
nation of the pleural pressure acting on its outside and theinatesx* and the control radii used to document the system’s evolution.
surface tension acting on its inside exceeds a critical value;
this is consistent with static analyses of this problem by Hill
et al'® and Rosenzweig and Jensérollowing the onset of - _ L
nonaxisymmetric instabilities, a strong destabilizing feed-that, unless specified otherwise, Greek and Latin indices
back between fluid and solid mechanics was shown to lead tE#"g€ from 1 to 2 and from 1 to 3, respectively; commas
the complete occlusion of the ring’s cross section, providedndicate partial differentiation. When the tube deforms, ma-
the surface tension was large enough. This demonstratd§fial points are displaced to their new positioRg,(x*)
that, at least in this simplified system, nonaxisymmetric in-="w(X")+V(x?). We decompose the displacement veotor
stabilities can lead to the occurrence of airway closure ifnto the undeformed basis vectors such that “a,+v°n.
situations in which there is not enough fluid to occlude theln€ tangent and normal vectors to the deformed tube are
airway in its axisymmetric state. A=Ruq andN=A; X A,/|A; X A,|, and the deformed met-
The present paper extends Heil and White’s analysis t6iC and curvature tensors afgz=A,-Ag andB.z=N-A, g,
three-dimensional instabilities. We show that the increase ifeSPectively. We denote the determinant of the deformed
wall compression caused by Halpern and Grotberg's primarynetric tensor bya. . _
axisymmetric instability can initiate a secondary nonaxisym- ~ 1Ne buckling of thin cylindrical shells typically involves
metric instability which causes the local buckling of the air-12rg€ displacements and bending deformation but only small
way wall and ultimately results in the formation of a local- In-Plane (membrang deformations. Hence, the components
ized occlusion. The mechanism allows the occurrence off the bending tensok,s=—(B.z~b,s) can become large
airway closure at small fluid volumes and for parameter val\Whereas the components of the in-plane strain tenggr
ues for which(i) the axially uniform state is still stable to =1/2Ass~24p) remain small. This implies that the de-

nonaxisymmetric perturbations arid) for which the axi- formed in-plane basis vectord, are approximately un-
symmetric state remains unoccluded. stretched and orthogonal to each other. Hence the strain in

the tube wall is small which allows us to use linear consti-

tutive equationgHooke’s law. The principle of virtual dis-

placements which governs the tube’s deformation can then
We model the airway as an elastic, cylindrical tube ofbe written in the form

undeformed radiu®,, wall thicknessh,,, Young’s modulus 1 /R \2

E, and Poisson ratie. The tube is loaded by the external ff{E“W{ YapOYys+ —(—‘”) Ka55K75:|

(pleura) pressurep,,; and it is lined with an incompressible

fluid of viscosity u and constant surface tensiof. When 1 1 hy |2 ~ .

the tube is undeformed, the fluid forms a uniform film of ‘1_2(1_1}2)(5) f- R, VA [dx'dx® =0 (1)

thicknessH,=HgR,. Throughout this paper asterisks are used

to distinguish dimensional quantities from their nondimen-(see, e.g., Ref. 25wheref=f"/K is the load vector, nondi-

sional equivalents. mensionalized by the tube’s bending stiffnesk

=E(h,/Ry)%/[12(1-+?)] and

Il. THE MODEL

A. Wall mechanics: Shell theory o)

We assume that the airway has a small wall thickness, B 2(1+v)
h,/Ry<<1, and use geometrically nonlinear shell theory to _ _ o
describe its deformation in response to the combined foad |s_the plane-stress st|ff_ness tensor. Carrying put th_e va_1r|at|ons
that the liquid lining and the external pressure exert on it. FoMVith respect to the displacemends and their derivatives
this purpose we parametrize the nondimensional vector t¥/ith respect to the Lagrangian coordinatstransforms(1)
the tube’s undeformed midplang,=r. /Ry, by the nondi- iNto a variational equation of the form
mensional Lagrangian coordinat&$, measured along the , _ _
tube’s midplane such that,=[x*, sin(x?),cogx?)|"; see Fig. f (00" + 00", + iV’ p)dXdX =0, ©)

1. The midplane metric and curvature tensors are given by

a,s=a,-ag and b,z=n-a, s respectively, wherea,=r,,,  where the functiong depend on the displacements their
andn=a; X a, are the outer normal on the wall. Throughout first and second derivatives with respect to the Lagrangian
this paper we use the summation convention and assunmordinate®, and on the load vectdrwhich includes con-

(a‘”alﬁ‘s +a*%alr + a“ﬁa75> (2)

-V
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tributions that need to be determined from the fluid mechanthe airway lumen as the reference value and set it to zero.
ics; see(13) below. Then the (dimensionagl fluid pressure is given byp"

If the rotation of material lines in the tube wall is small, =x,o" /R,.
the strain and bending tensors can be approximated by Sand- The assumptions underlying the derivation(d®) from
ers’ moderate rotation approximatio’r?s, the three-dimensional3D) Navier—Stokes equations imply
that ;, could be linearized with respect to the film thickness

_ (1 _ 232 1 342 )
= W= o) T8 Hu; + WY)72, (4) h and the wall displacements without loss of(asymptotig
1 2\ 3 202 2. 3 accuracy in the limit,v'— 0. FurthermoregM/ it could be
Y22= (0= V)8 + (W5 =) 2 +v o+ 07, (5) replaced byh/t. However, it was shown in Refs. 9 and 12
that Eq.(12) provides excellent predictions for the evolution
_ (1 2 3 _ .23
Y12= Y= Wt v+ (W - vu /2, ®  ofthe air-liquid interface even if the film thickness becomes
and large and/or the tube wall highly curved, provided the exact
expressions fok,, andM are usedsee Fig. 16 in Appendix
-_.3 _.2_.3 7 X _ < ) :
Ki1=7UV11p  K22=U 27 U)o (™) Aforan illustration. This is because surface-tension-driven
5 L 5 flows evolve towards equilibrium configurations in which the
Kip= Kp1= ~ U1~ Upl4 + R5/4. (8  air-liquid interface has uniform curvature. Using the exact
We will use these approximations in the stability analyses ifPXpressions foM and«;, ensures that these equmbrl_um con-
Secs. 1A and IV A. figurations are represented accurately(bg): ¢/4t=0 if and
only if x,=const, subject to the constraint that the volume of
B. Fluid mechanics: Lubrication theory fluid is conserved.

To describe the surface-tension-driven flow in the liquidc. Fluid structure interaction
film that lines the deforming tube, we parametrize the fluid
domain by introducing a vectd; to a point at a distance’
from the inner surface of the tube via

Fluid and solid mechanics interact in two ways: The
wall displacements change the geometry of the fluid domain.
This effect is represented by its parametrization via @§.
R %% %3, 1) = Ry (X1 X3, 1) +53Si (X x4 1) . (9 Hence,M andk, in the evolution equatiof12) for the film
In this parametrization, the air-liquid interface is located atth|cknessh also depend on the wall displacemevfts(n)_The
x3=h(x!,x?,t), where the film thickness is measured in the wall is exposed to the fluid pressupe and the flow in the
direction of the vectoss, defined as liquid film generates a*wall shear stress. If we measure the
external pressur@ey=Pey/ K relative to the pressure in the

1 airway lumen then the combined load on the airway wall is
= —————=—=(0,-N,,—N T 10 .
S V(Np)? + (Ns)z( 2N 0 given by
The v_olume of_ fluid _“above” a patch bounded_ by the La- f=— PeN + a(th _ ha—KEAQ), (13)
grangian coordinate incremerds® anddx? on the inner sur- X

H P — 142
face of the tube is then given V=Mdxdx” where where we have again exploited the fact that the Lagrangian

1o hoc 1) ~ coordinate lines remain approximately orthogonal and un-
MO, x5, 1) = . Vgdx, (1) stretched. The parameter
andg is the determinant of the metric tensgf=Rs;-Ry; o= —— (19
associated with the parametrizati(9). KRo

If we assume that the film thicknessis (and remains s the nondimensional surface tension and represents the ra-
much smaller than the minimum radii of curvature of thetjo of the typica| pressure ]ump over the curved air-”quid

wall and the air-liquid interface, and that the Reynolds num-nterface to the wall’s bending stiffness. Large valuessof
ber of the surface-tension-driven flow is small, then the evoindicate strong fluid-structure interaction.
lution of the film thickness can be described by lubrication  Equation(13) shows that the initial load on the unde-

theory (see, eg., Ref. 37 formed airway is given by the pressure
M d (1 Lok
— - —h3—h>=0, 12 = Pt ——
(jt\ axa( 3 &Xa ( ) plnlt pext+ 1- Ho . (15)

where we have used the assumption that coordinate lindscreases ino and/orH, increase the initial wall compres-
remain approximately orthogonal and unstretched—this ision and thus make the wall more susceptible to buckling
consistent with the small-strain assumption already made iimstabilities. When we consider the effect of variationszin
the wall mechanicsk,=x,Ry is the curvature of the air- andH,, we will usually compensate for thisbvious desta-
liquid interface(the sign chosen such that <0 for the ini-  bilizing effect by adjusting the external pressure so that the
tial uniform film) and time has been nondimensionalized ontube remains subject to the same initial compressign

the viscous scald=t"/(uRy/c"). The fluid pressure is con- This procedure allows a clearer identification of the various
stant through the thickness of the film. We use the pressure iadditional instability mechanisms that are involved in non-
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axisymmetric airway closure. Int_er_estmgly, the procedure_ _has Flg=1+V,- Ja +Vg)2+ Ho(Ho - 2) (17)

a strong resemblance to the clinical procedure of positive-

end-expiratory-pressure ventilation in which the destabiliz4s the uniform film thickness on the deformed tu{ge) in-

ing effect of a pathological increase in the surface tension ofreases when the tube is compressed. To determine the sta-
the lung’s liquid lining is compensated for by an artificial bility of this uniform state to axisymmetric perturbations, we

pressurization of the lung. expand the film thickness and the wall displacements as
D. Presentation of the results h=h© = H0+ eAH® eet cogkxb), (18)
The time scaleT, .= uRy/ o, that we used for the non- 12 01— ¢, \®1gat

dimensionalization of the fluid equatiol2) yields a v eaV e sinkx), (19
parameter-free partial differential equation Ayt does not 2_0 (20)
capture the dynamics of the surface-tension-driven thin-film vy
flows. The time scale for such flows is given i

g B 03=p@3 =V, + VA% cogkxt), (21)

=3uRy/(0"H3), provided the wall deformation and the

changes in the film thickness remain smaII We wish to anawhere e, < 1. We insert(18)—(21) into the Euler—Lagrange
lyze the effect of variations ity and o™ in problems with  equations of the variational principid), into the fluid equa-
strong fluid-structure interaction. Therefore we shall presenfion (12), and into the load termé&l3) and expand all equa-
most of our results on a third time scalsst' /T where T tions in powers ofe,. At order O(es) we obtain three linear
=p/K which is independent of these quantities. algebraic equations which can be written in matrix form as
To illustrate the temporal evolution of the system, wesSy=0 wherey=(V®1 VA3 H®) is the vector of the pertur-
will frequently show plOtS of the radii of the elght character- bation amp"tudes_ The tempora| growth rat®f the pertur-
istic points(four on the tube wall and four on the air-liquid pation with axial wavenumbek=27/A is determined by

interface identified in Flg 1. These radii allow a simple de'[(S):O The exact expression for the growth ratés too
characterization of the system’s deformation. For instanceengthy to quote here but it has the form

nonaxisymmetric buckling of the tube wall in the cross sec-

tion x=0 manifests itself by a decreaseRp and an increase . H3K?2 ( 1 ~ k2>
in R, whereasR; =R, indicates that the cross section has 3(1+Vg - Hg) \ (1 +Vo— Ho)
remained approximately axisymmetric.
The simulations presented below were performed with a “11+0 hy 2 22)
nondimensional wall thickness df,/Ry=1/20. This value 7 '

represents a compromise between the values in the pulmo-
nary airwayswhich tend to be slightly thickernd the limi- This shows that the neutrally stable wavenumgy,, is the
tations imposed by the use of thin-shell theory. Poisson Jeciprocal of the radius of the axially uniform interface,
ratio was seF tw;0.49 to reflect the near-incompressibility Kooy = 1AL + Vg - ﬁo) (23)
of physiological tissue.
and perturbations witlk <k, have positive growth rates.
This is completely analogous to the behavior found in rigid
tubes®’ If we let the wall bending stiffnesis —« (by setting
0=0), Eq. (22) becomes identical to the dispersion relation
We will first (re)investigate the axisymmetric instability for perturbations to liquid films that line uniform rigid tubes.
of liquid-lined elastic tubegfirst studied by Halpern and !n that case the maximum growth raig,,, occurs for per-
Grotberd) with our formulation. The results from this sec- turbations with wavenumbeég,,,= 27/ Ama= 110V 2(1-Ho)].
tion form the basis for Sec. IV A in which we analyze the The plot of the dispersion relatiai22) for various values of
linear stability of the evolving axisymmetric state to nonaxi- @ in Fig. 2 shows that wall elasticityo>0) slightly in-

lll. THE PRIMARY AXISYMMETRIC INSTABILITY

symmetric perturbations. creases the growth rate of the fastest growing instability and
slightly decreases its wavenumber.
A. Linear stability analysis Qualitatively, these predictions agree with Halpern and

Grotberg’s results for the case of zero wall dampitg O in
their mode). A direct comparison is difficult because Halp-
ern and Grotberg’s model is based on different wall equa-
tions; see Appendix C for a more detailed discussion.

Initially, the fluid forms a static, uniform film on the
axisymmetric tube wall. In this configuration, the relation
between the external pressymg;and the uniform radial wall
displacement3=V, is given by

B. Numerical simulation in the nonlinear regime
12V o 1. Discretization

- , 16
(RZ1+Vo 1 +voFig (10

Pext= ~
To follow the evolution of unstable axisymmetric pertur-
bations into the large-displacement regime, we®&ek’>=0
where we have used Sanders’ moderate rotation approximandv?=0 and discretized the wall and fluid equatighsand
tions for the strain and bending tensors. (12) in the domainx!  [0,L] with finite elements. We ap-
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L 3~
4 oM h oKy, 0
fax1o®p f}“>:f (—ij+——;‘—‘/})dx1:o. (27)
1 ox1omE o \ dt 3 Ix” X
1.0x10™ After discretizing the time derivative with an adaptive BDF2
38.0x10%F schemé? this provides a system of discrete equations for

thoseH! which are not determined by the periodicity condi-
tions. The equations were augmented by the weak equations
for the discrete curvaturd¢/,

6.0x107%

4.0x10%

2.0x10™

0.0x1 0“"’U

L
i = f ( Ky - Kh) gdxt=0, (28
0 |

FIG. 2. The dispersion relation for axisymmetric perturbations to axially where «;, is the exact curvature of the air-liquid interface.
uniform quuid-lin?d tube*s for different nondimensional surface tensiens  Newton’s method was used to solve the fully coupled system
Growth ratew=w uRy/ o as a function of the wavenumbkr p;,;=0, Hy . - . - -

—01. of nonlinear algebraic equations that arise at each time step.
The associated linear systems were solved with the frontal
solver HSLMA42 from the HSL2000 Iibrar)]/.9 The simula-
tions were started from an initial state in whioh=v3=0

plied periodic boundary conditions that allow the develop-and h=Hg[1+¢, cogwx*/L)], where ¢,=102 was used to

ment of the fastest growing perturbation and (aét:ui initiate the growth of the instability in a controlled manner.
=h;=x,1=0) at x!=0 and x!=L. Generally we setL To validate the numerical solution of the wall equations,
=v2m(1-Hy), half the wavelength of the fastest growing we considered the deformation of a finite-length tube with
perturbation to the film thickness in a rigid tube because waltlamped ends, subject to a constant external pressure. We
elasticity only has a small effect on the most unstable waveeompared the predictions for the wall displacement field ob-
length; see Fig. 2. We will investigate the effect of variationstained from the finite-element based discretization of the
in the domain lengthL in Sec. IV B. The procedure em- variational principle(3) against independent solutions ob-
ployed for the discretization of the coupled equations istained from a finite-difference discretization of the corre-
based on that used in Ref. 12 where full details can be foundsponding Euler—Lagrange equations. When plotted, the re-

Briefly, we represent the axial and radial wall displacementsults were graphically indistinguishable. To validate the

by piecewise cubic Hermite polynomialg(x') and write numerical solution of the lubrication theory equatidi®),
o 1s o _ we compared the initial growth rates of the axisymmetric
v @(xL) = E VI(®)(xh) fori=1 and 3. (24)  instability against those predicted by the dispersion relation
j

(22). Furthermore, we repeated Gauglitz and Radkeisiu-
lations of the finite-amplitude evolution of the Rayleigh—
Plateau instability in rigid tube¢simulated here by setting
] o=0, which corresponds to the case of infinite wall stiffiess
i and obtained excellent agreement with their resisée Ref.
{fo (it + bty 1 + ¢ill¢i,11)dxl} VI =0. (25) 20). Finally, we performed(qualitative comparisons with
Halpern and Grotberg's simulationssee Appendix C for
The variations of thos&/l that are not determined by the details. The independence of all results on the time step and
periodicity conditions are arbitrary and the expressions multhe spatial resolution was confirmed.
tiplied by the correspondingV!! must vanish. This provides
a system of nonlinear algebraic equations for the unknowp Resyits
V. These equations still contain the load tefmshich have
to be determined from the solution of the fluid equations.
Equation(12) involves the second derivative of the in-
terface curvaturex, which itself contains second derivatives "~ 7° @ )
of the wall displacement field'. Fourth derivatives of the Wh'_Ch IS ce_ntered at=0; see Fig. .83‘)‘ AS the v_olume of the
wall displacement field are not available from the HermiteMan .Iobe Increases, the film thins in the right half of the
expansion in24). Therefore, Eq(12) was solved by a mixed domain and in Fig. @), the development of a secondary

finite element method in which independent Hermite interpo_(satellite) lobe can be observed. The main and satellite lobes

lations were used for the film's thickness and its curvature, &€ connected by a rapidly thinning “neck” region. The flow
resistance in this region increases witf¥, hence the flux

h(xt, D) =D Hj(f)¢j(x1), %OLH =D Ki(f)zpj(xl). into the main lobe decreases rapidly even though the pres-
j j sure drop between the two lobes continues to incrésse
(26) the right column in Fig. 3 which shows the normal compo-
nent, Pexi— 0k, Of the load on the wall; sincee,; remains
The finite element expansiok, for the film curvature was constant, the graph gives an indication of the variations in
then used in the Galerkin solution of the weak form(b2) the interface curvature and the fluid pressufegure 3c)
which was integrated by parts to yield the equations shows the shape of the interface at large times, together with

We insert these expansions into the variational princ{f)e
which becomes

Figures 3 and 4 illustrate the system'’s evolution Ity
=0.1 ando=100: Initially, the perturbation to the film thick-
ness grows exponentially and fluid drains into a main lobe
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1 15 The system is not in equilibrium but the time scale for the
o e IR further redistribution of fluid is very large. This is illustrated
i ] L 2\ by the solid lines in Fig. 4, which show the evolution of the
2; N5 radii Ry, Rs, Rh%, and R3: as t.he pe.rturbation groyv:Rhl
@) 1 R 2 19 i IR (Rn3) decreasegncreasebas fluid drains into the main lobe.
1 . The compression of the tube neax0 _reducesRl while the
g /\ 10 reduced interface curvature neerL inflates the tube and
~ 08} %5 thus increaseRs. In its axisymmetric state, the tube wall is
o7f & gﬁ very stiff and despite the strong compression nead, the
o6} e D wall only undergoes very small radial deflections. Therefore,
(b) ! % % o2y 3 the redistribution of the fluid is very similar to that observed
1 15 in rigid tubes for which it was shown by Gauglitz and
0.9 go Radke’ that an initial film thickness of at leasty=0.12 is
ko.a-/ % B 2 required to allow the formation of an occluding liquid bridge
2: k)| T8 via a continuous evolution from the initial uniform liquid
(C)' 1 58 2 10 : S film. For smaller values oH,, fluid continues to drain from

the satellite lobe into the main lobe whose air-liquid interface
FIG. 3. The axisymmetric fluid domaifieft column) and the normal com-  ultimately approaches the shape of an unduloid—a surface of
ponent ch)zths‘ '0ad00” g;e Vgaﬂfight Cglum?ﬁ athdif_fﬂent_ timeﬁ-(a) t  constant mean curvatufdn practice, van der Waals forces
clf)'szeouélof ’tr(1e)tthir15"‘n>;g-k" Yrggiof)t;aféo?\?;ctérhee rlrr:aslfnt Ie;‘r(:(:j) ssatc;\i\lli?ealobe\./,vou'd_cause the film to rupturg in the neck reglon when the
He=0.1, 0=100, p,yy=2.9, L=+2m(1~Hy). Time scalet=t"/(u/K). film thickness falls below a critical value. This would create
two disconnected lobes which are separated by a dry patch.
However, this effect is not included in our model.
a closeup of the thin neck region. The corresponding plot of ~ The broken lines in Fig. 4 show the evolution of the four
the wall load indicates that the fluid in the main lobe exerts econtrol radii when the nondimensional surface tension is in-
strong compression on the tube wall. The air-liquid interfacecreased. As discussed in Sec. Il D, we adjusted the external
curvature in the satellite lobe is approximately uniform butpressure so that the initial compressigpy is the same for
less negative than in the initial, axially uniform configura- all cases. The additional wall compression generated by the
tion. Consequently, the tube wall is inflated in this region.axisymmetric redistribution of fluid is given by the product
of the surface tensioar and the change in interface curvature
relative to its value in the axially uniform state. Hence, for a

102b ot ; given shape of the air-liquid interface, an increaserim-
é ' I:,,;: """""""""""""""" creases the additional wall compression. In an elastic tube,
= ] . this reduces the radii of the wall and the air-liquid interface
& \ ' and increases the wall compression even further. Figure 4
goga v shows that, for sufficiently large values of the nondimen-
g N ) sional surface tensioa, this destabilizing feedback can ini-
“5096 AR e o=100 tiate an irreversible and extremely rapid collapse of the air-

. o S e = 52 . . . . - .
'-§ | ‘ o =% liquid interface. The occurrence of airway closure via this
M094 i T S it mechanism was first identified and studied by Halpern and
@ ' ' { F— Grotberg’

1F,—
£ e
o g
g =
B oosll )
£ 08 -\‘ ‘
g ] \ IV. THE SECONDARY NONAXISYMMETRIC
g K T _ INSTABILITY
E 06 "\\._ )
Lg - L e The preceding section showed that the redistribution of
é ! fluid by the primary axisymmetric instability creates a strong
K: Rl I PR S S compression of the airway wall in the region of the main
0 600 1200 7 £ 49000 50000

lobe. We will now investigate whether this compressive load
can become large enough to initiate a secondary nonaxisym-
FIG. 4. (a) The wall radiiR, (lower lines andR; (upper lineg, and(b) the ~ Metric instability that causes the buckling of the airway wall.
corresponding radii of the air-liquid interface during the axisymmetric Ray-\We are particularly interested in parameter regimes in which

leigh instability for different values of the surface tension When o ; ; ) ; _
=100, an axisymmetric lobe forms which does not occlude the airway. Asalrway closure either by Halpem and GrOtberg S axisymmet

the surface tension is increased, the airway can undergo compliant collap$ic mechanism or by Heil and White's nonaxisymmetric, but
leading to airway closureHd=0.1, L=v2m(1-Ho), Pinir=2.9. axially uniform mechanism is impossible.

1= (HWK)

—
o
~
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A. Linear stability analysis 0.2F

1. Formulation and numerical solution
0.1

We decompose the wall displacement field into its axi- ;‘;} .

symmetric part and a small nonaxisymmetric perturbation by = 4
writing v'=v@i(x!; t) + evW(x2, X%, 1), wheree< 1. As shown ‘= i
in Sec. IIl B, the axisymmetric stat€”' evolves in time but % 4f
it evolves slowly, except during the very early stages of the i
system’s evolution or whefand if) it undergoes the final, _0.2: /
very rapid collapse. We wish to analyze the system’s stability
to nonaxisymmetric perturbations in the intermediate regime.
Therefore we determine the growth rate of the nonaxisym-

metric perturbationSu(l)', by a “frozen-coefficient” analysis FiG. 5. The maximum growth rate against time for the nonaxisymmetric

S50 500 750 7000
t= {HWK)

and write the nonaxisymmetric perturbations as modesN=2,3,4. The system becomes unstable to nonaxisymme_tric pertur-
bations in theN=3 mode att~480. 0=100,H=0.1, p;;=2.9, L=v27(1
v P(xL %2 1) = VDY (x) cogNxP)ett, ~Ho).
D2, %2, 1) = VD2(xhsin(Nx)eft, (29)

tries and we used the generalized non-Hermitian eigenvalue
v D3(xL %2 1) = VD3(xL)cog Nxd)elt, routine nagnsymageneig all from the NAG library to com-
_ _ . pute the eigenvalues and eigenvectors.
whereN is the(integey azimuthal wavenumber of the mode e validated the stability analysis by determining the

with axial mode Shape’(l)i(xl)- . . . tube’s stability to nonaxisymmetric perturbations when
We apply equivalent perturbation to the film thicknessioaded by a constant external press(ire., for ¢=0). The
and the air-liquid interface curvature by writing buckling pressures and the associated mode shapes for vari-
hO (2 1) = hO(xt:t) + eH O (xb) cog NxR) e, ous azimuthal and axi:_al yvavenumbers agreed with the pre-
(30) dictions of Ref. 21 to within 1%. Furthermore, we compared

the growth rates of nonaxisymmetric, but axially uniform,
perturbations to the analytical predictions of Ref. 12. The
and determine the instantaneous growth rateRe(¢) of predictions for the grovyth rates agreed to within 2%: Finally,
these modes for a giveffrozen axisymmetric solution W€ compared the predictions for the onset of nonaxisymmet-
vi(xL:1). Consistency of the variation&' in (3) with (29) ric |nstab|lltlgs with the numerical solution of the full non-
requires that linear equations; see Sec. IV B.

Svt = cogNx®) sVVL(xY),

kP 1) = k0 (xE:t) + ek D (xhcogNxd) e,

2. Results
Sv? = sin(Nx®) SVD2(xY) (31) Figure 5 illustrates the stability of the evolving axisym-
metric configuration to nonaxisymmetric perturbations. The
Sv3 = cogNxX®) SVD3(xY), figure was generated by the following procedure: starting

_ from the same initial conditions that we used for the simula-
where SV' are arbitrary. With these expansions, E()  tion shown in Fig. 3, were)computed the system’s axisym-
and (13) only have a trivial@and consistent® dependence, metric evolution. At every time step, we evaluated the coef-
and the integration over? in (3) can be carried out analyti- ficients of the eigenvalue problef32) and determined the
cally. We expand all terms if8), (12), and(13) in powers of  growth rates\=Re(£) for perturbations with various azi-
€ and, upon collecting the linear terms, we obtain a spatiallymuthal wavenumbens. Figure a) shows the largest instan-
one-dimensional, linear eigenvalue problem for the modeaneous growth rates(N) for nonaxisymmetric perturba-
shapesV™(x}), HM(xY), and LY (x). The coefficients in  tions with azimuthal wavenumbef$=2,3,4, as dunction
this eigenvalue problem depend on the primary axisymmetrigf time. Initially, all growth rates are negative and the system
solution which is only available numerically from the proce- is stable to nonaxisymmetric perturbations. As the axisym-
dure discussed in Sec. Ill B. Therefore we expand the modgetric lobe develops, the tube’s compression increésess
shapesyi(x}), HP(xY), and CP(x) in the same finite el-  Fig. 3) and att~480 the tube becomes unstable to nonaxi-
ement base24) and(26) that we used for the discretization symmetric buckling in theN=3 mode. The axisymmetric
of the axisymmetric problem. This transforms the continuousobe continues to grow, increasing the compressive load on
problem into a discrete generalized eigenvalue problem ofhe central part of the tube even further. This increases the
the form growth rate of the unstabld=3 mode while the growth rates

_ _ of all other modes remain negative.

(A= B)x=0, (32 Figure 6 shows a plot of the maximum growth rate
whereA, B are sparse matrices, ards the vector contain- against time for different values of. We only plot the value
ing the degrees of freedom of the finite element expansionf the growth rate when it is positive and all curves are for
for the mode shapes. The matrices have no special symm#ie N=3 mode, as perturbations with other azimuthal wave-
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FIG. 6. The positive growth rates of perturbations with azimuthal wave- SOF N=2 oo o e
numberN=3 against timet for different values of the surface tension T re——— T T PP
Pinit=2.9,Hp=0.1, L=v2m(1-H,). 1 2 3
pimt

numbers decay. As decreases, the onset of the nonaxisym-"'C: & The parameter valugg,, o for which the system becomes unstable
to nonaxisymmetric perturbations with azimuthal wavenunibeluring the

metric instability is delayed and its growth rate is reduced eriog o<t /(u/K) <2.2x 10t Hy=0.1, L=+2m(1~Hy).
This is documented in more detail in Fig. 7 which shows
how the timet;sp at which the system first becomes un-
stable to nonaxisymmetric perturbations, varies withiThe  data shown in Fig. 7 to smaller and smaller valuesoof
figure suggests that the system will remain stable to nonaxiFurthermore, the nonaxisymmetric instability needs to de-
symmetric perturbations i is less than some critical value velop over time scales that are comparable to the period
omin- This quantity is of interest in the context of the airway Ty,.an Of the breathing cycle if it is to be of relevance in the
closure problem because, if the valuesmf; and Hy are  context of the airway closure problem. The estimates for
such that the airway cannot become occluded in its axisymphysiological the parameter values discussed in Sec. V, show
metric state then airway closure is impossibleoik o, that the maximum nondimensional time oft"/(u/K)
(For the values chosen here, the solid curves in Fig. 4 show2.2x 10* in Fig. 7 corresponds to a dimensional value of
that this is indeed the case and Fig. 7 suggests édhat 267 s which is much greater thaR,,» The value o,
=<63). ~ 63 therefore presents a useful upper limit for the nondi-
As discussed in Sec. Il B, the wall compression in- mensional surface tension below which airway closure can-
creases continuously as the fluid redistributes itself towardaot occur for the given values &f, and p;,;;. (A lower limit
its final axisymmetric equilibrium state in which its entire of o,,,,=10 can be derived by analyzing the static stability
volume is contained in a single lobe. For valuesraflose to  of the ultimate axisymmetric equilibrium state to nonaxisym-
omine the main lobe has to be almost fully developed beforemetric perturbations; see Appendix.B
the wall compression is strong enough to cause buckling. A decrease in the initial pressupg;; has a similar effect
The evolution towards this final state takes place over exto a decrease im. The onset of the nonaxisymmetric insta-
tremely long time scales and the presence of the increasingbility is delayed and its growth rate decreases. Again, there is
thin neck region that connects the main and satellite lobea critical value ofp;,; below which the system does not
requires the use of very fine spatial discretizations to fullypbecome unstable to nonaxisymmetric perturbations. Figure 8
resolve the flow. Therefore it is not feasible to compute theprovides a summary of these results. A marker indicates a
value of o, by continuing the procedure used to obtain theparameter combinatiofp;.;;,o) for which the system be-
comes unstable to nonaxisymmetric perturbations at some
point during its axisymmetric evolutiofithe simulations

20000 | were again carried out in the range<®/(u/K)<2.2
[ \ X 10%]. For initial pressures in the rangg,; > 3, the tube is
S 1soo0f | unstable to axially uniform buckling in thd=2 mode*? in
g ! \\ these cases the axisymmetric redistribution of fluid is not
’ gmooo:- \\ required to initiate the nonaxisymmetric instability. For val-
1 [ \ ues of the initial pressure in the rangg;; <3, the system
E [ \\ first becomes unstable to buckling in the=3 mode. The
-5 S000F N critical surface tensiowr,,, decreases with increasing,;.
\\k'R At larger values ofy,;;, honaxisymmetric perturbations with
0 S B0 50 T00 wavenumber®=2 andN=4 also become unstable but, for a
G given combination ofp;,; and o, the N=3 mode is always
FIG. 7. The time at which the system becomes unstable to nonaxisymmetrirthe first to become uns_ta_b_le; _See F!g. 13 below.
perturbations as a function of the surface tensiorp,;;=2.9, Ho=0.1, L A decrease in the initial film thicknedd, (at constant
=\27(1-Ho). pinit) decreases the growth rate of the primary axisymmetric
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instability [see Eq(22)], causing slower growths of the main
lobe and the compression of the tube wall. Hence a decreas£ 1.05
in Hy delays the onset of the nonaxisymmetric instability and &
reduces its growth rate; for an illustration see Fig. 14 below.
Finally, we discuss the effect of variations in the domain
length L. Thus far we have always assumed that the axial
wavelength A(=2L) of the nonaxisymmetric instability is
identical to that of the fastest growing axisymmetric mode. If 2,45t
we shorten the computational domain, the axisymmetric in-E
stability develops with thésmalle) growth rate of the fastest (a) 08
growing axisymmetric mode that “fits” into this domain, as
predicted by(22). Therefore, the onset of the nonaxisymmet- f
ric instability is delayed and its growth rate decreases; uIti-% 0.85F
mately, whenA<2w(1+V0—;|0) even the axisymmetric in- g 0.9F
stability is suppressed. In that case, nonaxisymmetricEggs}
instabilities only occur fop;,; > 3. For axial wavelengths in
the rangeA> A, the axisymmetric instability initially g
grows at a rate less thany,,, causing the wall compression £%/5F
to increase more slowly. However, in the Iarge—displacemem“i 0.7

0.95F

all control

5 oof

of

0.8 -

~

—

terface ¢

regime, the main lobe can recruit more fluid from the satel- 2 45 R, andR,, ‘.
lite lobe. This allows the main lobe to grow more quickly. & ¢ T2~ 30070 500 80 700
Overall, the nonaxisymmetric instability occurs slightly ear- (b) t=t/H{WK)
lier and its growth rate increases slightly with An example

f this | f? in Eia. 15 bel gntly P FIG. 9. (a) The tube wall control radiRy, ... ,R, and(b) fluid control radii
0 IS 1S Shown In Q. elow. Ri1s -+ - Ry against time. At =480, the tube begins to buckle nonaxisym-

metrically in theN=3 mode. Att= 640, the system undergoes a rapid non-

B. Numerical simulation in the nonlinear regime axisymmetric collapse. Inset: The wall control ragj, ... ,R, against time

) . ) ) _ as the tube wall begins to buckle nonaxisymmetrically. The markers indicate
The linear stability analysis presented in the precedinghe time at which the linear analysis predicts instability to nonaxisymmetric

section showed that the wall compression induced by theerturbationso=100, piyi=2.9, Ho=0.1, L =v2(1-Hy).
primary axisymmetric instability can initiate the nonaxisym-
metric buckling of the airway wall. We will now follow the
growth of this secondary instability into the nonlinear, large-
displacement regime to determine whether the in{sahall-
amplitude buckling of the airway wall can result in airway
closure.

cretized and a small pressure perturbation of the form
€ cog3x?) with =10 4 was added to the load vectbito

initiate the controlled development of the nonaxisymmetric
instability. Figure 9 shows the initial development of the axi-
symmetric instability which manifests itself by a decrease in

) o ) ) Rn1= Ry while Ry3=~ R4 increase; there are corresponding
The coupled discretization of the two-dimensional shell(but much smaller changes in the wall control radii

and lubrication theory equatiorts) and(12) was performed g R4, see also the 3D plots of the wall and air-liquid
by the same method that we employed in Sec. Il B for theierfaces shown in Fig. 10.
axisymmetric equations. The one-dimensional Hermite ele-  Tne insetin Fig. £a) shows a closeup of the evolution of
ments were replaced by isoparametric quadrilateral Hermitgye wal| control radii in the vicinity ot=480—the time be-
element&” and the computational domafoovering half of  yong which the(frozen-coefficient linear stability analysis
one lobe, as indicated by the wire mesh in Figwhs typi-  predicted positive growth rates for nonaxisymmetric pertur-
cally discretized with 1& 10 elements. The code was vali- pations withN=3 azimuthal wavesthis time is also indi-
dated by computing the large-displacement postbuckling desated by the markgrThe inset indicates that the difference
formation of a finite-length tube with clamped gnds, loadedyetween the wall control radR, andR, does indeed begin
by a constant external pressure, and comparing the resulf§ grow exponentially at approximately this time. The non-
against the predictions from existing, independent c63&s. axisymmetric collapse remains localized and buckling only
Furthermore, we compared the results from the fully coupledyccyrs in the vicinity of the main lobe—the cross section at
code against the predictions from the linear stability analysi§=| remains approximately axisymmetrigs~ R,; see also
(see below and against preliminary results from a full Fig. 10.
Navier-Stokes simulation of the problem; see Fig. 16 in Ap- ~ The contours in Fig. 11 illustrate the evolution of the
pendix A. normal componentt,,= pey— okp, Of the load that acts on the
wall. Initially, the wall is strongly compressed in the vicinity
2. Results of the main lobe and inflated in the vicinity of the satellite
Figure 9 shows the evolution of the eight control radii lobe. As the wall begins to buckle nonaxisymmetrically, the
R;,...,Rs and Ry, ... Ry, for the same parameter values pressure distribution in the region of the main lobe becomes
that we used in Fig. 5. One-sixth of the domain was dis-highly nonuniform. The curvature of the air-liquid interface

1. Discretization
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FIG. 10. The wall and air-liquid inter-
face shapes at different timé¢a) t=0,
(b) t=345, (c) t=480, and(d) t=643.
The tube buckles nonaxisymmetrically
in the N=3 mode.H,=0.1, =100,
Pinit=2.9.

becomes morélessg negative in regions in which the wall As the nonaxisymmetric collapse increases, the small
buckles outwardginwardg. Since p=o«xy, this creates a fluid pressure in the main lobe continues to drain fluid from
fluid pressure gradient that drives azimuthal flows which atthe satellite lobe. Furthermore, the nonaxisymmetric buck-
tempt to return the air-liquid interface to an axisymmetricling reduces the cross-sectional area of the most strongly
shape. Indeed, Fig. 10 shows that while the wall bucklesollapsed cross section. These two effects continually reduce
strongly, the air-liquid interface remains nearly axisymmet-the radius of the air-liquid interface and cause a further in-
ric, Rny= R, andR;~R4. The azimuthal variations to the crease in the compressive load on the wall in this region.
fluid pressure oppose the nonaxisymmetric wall deformaUltimately, this destabilizing feedback initiates a rapid non-
tions, as regions of the wall that buckle outwards are pullecaxisymmetric collapse of the tube and the air-liquid interface
inwards and vice versa. Compared to the case of a “deaditt~640. As in the axisymmetric case, the numerical simu-
loading, the surface-tension-induced component of the loathtion can only follow the compliant collapse up to a certain
on the wall is therefore stabilizing and reduces the growthpoint. This is because the smaller and smaller time steps,
rate of the nonaxisymmetric instability. This effect was firstrequired to resolve the extremely rapid collapse, ultimately
reported in Ref. 12 for axially uniform instabilities. cause numerical problems which result in the failure of the

FIG. 11. Contour plots of the normal
component of the load,=pe— ok,
acting on the tube fofa) t=0, (b) t
=345, (c) t=480, and(d) t=643. Note
that the contour scales are different in
each plot.
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FIG. 12. (a) The wall control radiiR, ... ,R, and(b) the air-liquid interface

control radiiRy,, ... Ry, for different values of the nondimensional surface FIG. 13. (a) The wall radiiR;, ...,R, and(b) the air-liquid interface radii
tensiono. The tube buckles in th&l=3 mode in all cases. The markers Ry, ...,Ry for instabilities with azimuthal wavenumbel=3 andN=4.
indicate the time at which the linear analysis predicts instability to nonaxi-The markers indicate the time at which the linear analysis predicts instability
symmetric perturbationddq=0.1, p;;=2.9, L=v27(1-Hy). to nonaxisymmetric perturbations=170,Hy=0.1,L=\2m(1-Hy).

Newton method to converge. However, full Navier—Stokes(ii) an increase i leads to a more rapid development of the
simulations of this problem for the same parameter valuegrimary axisymmetric instability; see Fig. 4. The combina-
(see Fig. 16 in Appendix Ashow that the system does in- tion of these effects implies that at larget less time is
deed evolve towards a completely occluded state. This denrequired to reach the level of compression that is necessary
onstrates that nonaxisymmetric instabilities allow the occurto trigger first the nonaxisymmetric instability and then the
rence of airway closure in regions of parameter space imltimate catastrophic collapse. In all our simulations, the
which axisymmetric models predict the airway to remain un-growth of small-amplitude, nonaxisymmetric perturbations

occluded(cf. Fig. 4). ultimately led to nonaxisymmetric compliant collapse at a
Figure 12 illustrates the effect of variations in the non-later time.
dimensional surface tensian on the system’s evolution in The linear stability analysis of Sec. IV A predicted that,

the large-displacement regime. For the parameter values chat larger values of the surface tension, the system should
sen here, the linear stability analysis of Sec. IV A predictedbecome unstable to nonaxisymmetric perturbations in mul-
an upper limit ofo,j,= 63 for the minimum surface tension tiple modegsee, e.g., Fig.)3An example of this is shown in
required for the nonaxisymmetric instability to occur. FigureFig. 13 which illustrates the system’s evolution in the large-
12 shows that the wall and the air-liquid interface do indeeddisplacement regime when the tube is subjected to perturba-
remain axisymmetric forr=50 [the simulation was contin- tions with azimuthal wavenumbeifd=3 andN=4, respec-
ued untilt=t"/(u/K)=5.0x 10* and the small nonaxisym- tively (in the latter case, only one-eighth of the domain was
metric perturbation induced b, did not growl. For =70  discretized to accommodate perturbations with this wave-
>omin the system becomes unstable to nonaxisymmetrioumbej. The axisymmetric system is predicted to become
perturbations aty,q,,~ 3.6 10° and the final rapid collapse unstable to perturbations with wavenumiés3 att~ 190
occurs attgjjapse™= 4. 7% 10°. A further increase inr reduces and it undergoes a rapid nonaxisymmetric collapset at
the time tj,sap @t Which the system becomes unstable to=~246. For arN=4 perturbation, the linear instability is pre-
small-amplitude nonaxisymmetric perturbations, as predictedicted to occur at the later time ¢f=321 and the ultimate

by the results of the linear analysis in Fig. 7. Furthermoregcollapse only occurs dt=365. We would therefore not ex-
the delay between the onset of the linear instability and thg@ect to observe thil=4 instability in practice.

final catastrophic collapse decreases with an increase in The effect of an increase in the initial film thickneds,

For instance, in Fig. 12,stap~teollapse™= 1.1X 10° for 0=70 illustrated in Fig. 14, is similar to that of an increaseodn

and tinstap~ teollapse™ 3-5X 107 for ¢=80. This is caused by For larger values oH,, the curvature of the air-liquid inter-
two effects:(i) For a given shape of the axisymmetric lobe, face, and with it the wall compression, increases more rap-
an increase inr increases the additional wall compression;idly. This causes the earlier onset of the nonaxisymmetric
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FIG. 14. Radius of control points fd#;,=0.09,H,=0.1, andH,=0.11. The FIG. 15. (a) The wall control radiiRy, ... ,R, and(b) the air-liquid interface
markers indicate the time at which the linear analysis predicts instability tocontrol radiiRy, ... ,Ry, for different values of the tube length The tube
nonaxisymmetric perturbations. In all cases\2m(1-Hg), o=100, Pt buckles nonaxisymmetrically in thd=3 mode in all casesd;=0.1, P
=2.9. =2.9,0=100.

. - . . tensiono . An increase in the nondimensional surface ten-
instability (as predicted in Sec. IV Aand reduces the delay .sion o via a reduction in wall stiffness has two competing

until the subsequent final collapse. Conversely, a reduction Retects. While the increase in leads a faster growth of the
Hy delays the onset of the instability and the analysis pre- '

ted in A dix B sh that f . | £ th instabilities on the time-scal&=u/K (see Figs. 2, 7, and
sented in Appendix B Shows that for a given value o e12), the time-scaleT itself increases as well. Rescaling our
surface tension, there exists a critical film thickness belo

_ ) ) : Wesults onto the bending-stiffness-independent time-scale
which the airway will remain open.

) . - _ . T,isc=0T shows that an increase in via a reduction inK

Figure 15 illustrates the. effect of.va.r|at|on.s- in the a.x'al still leads to an overall increase in the growth rates of the
wavelen_gthA of the n(_)naX|symmetr|c instability. és dis- primary and secondary instabilities.
cussed in Sec. lll, an increase i beyond A ,,=2v27(1
—-Hp) reduces the initial growth rate of the axisymmetric in-
stability but leads to faster growth in the nonlinear regime.
Figure 15 confirms that the perturbation with=A/2 Motivated by the problem of pulmonary airway closure,
=1.97(1-Hp) initially grows much more slowly than that we have studied three-dimensional nonaxisymmetric insta-
with L=A/2=1.6m(1-H,), causing the instability to nonaxi- bilities of liquid-lined elastic tubes. The system’s evolution is
symmetric perturbations to occur e 420, as opposed to driven by gradients in its total potential ener@omprising
t=400. However, in the large-displacement regime, the perthe strain energy stored in the elastic wall and the surface
turbation with the larger wavelength grows much moreenergy stored in the air-liquid interfacéHence static analy-
quickly and for both wavelengths, the ultimate collapse ocses, such as those in Refs. 10, 11, 13, and 14 can identify the
curs at approximately the same time 488, much earlier system’s(possibly multipleé equilibrium configurations and
than for the initially fastest growing mode. their stability to quasisteady, small-amplitude perturbations.

Finally, we discuss the effect of variations in the wall However, only dynamic analyses, such as the one performed
stiffnessK. For given values of the dimensional surface ten-here, can determine which of these equilibrium configura-
siona”, the film thicknessH,, and the external pressupg,,  tions can be realized via a continuous evolution from a given
the primary effect of a reduction iK (corresponding to a initial state. Furthermore, dynamic analyses are required to
weakening of the airway wallds an increase in the nondi- establish the time scales over which any instabilities develop.
mensional surface tensiom and the initial loadp,,;. This  Appendix B shows that, in the present problem, a quasistatic
makes the airway more susceptible to buckling instabilitiesstability analysis leads to unrealistically small values of the
When we analyzed the effect of variationsdnon the sys-  surface tensiow,,;, required for airway closure to occur.
tem’s postbuckling behavior, we hayso fap always asso- We have shown that the additional wall compression in-
ciated changes i with changes in the dimensional surface duced by a primary, axisymmetric fluid-elastic instability can

V. SUMMARY AND DISCUSSION
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initiate the nonaxisymmetric buckling of a liquid-lined air- ment of the nonaxisymmetric instabilities. We have ignored
way and that the nonlinear growth of this secondary instabilthe presence of surfactants and have assumed that the surface
ity can initiate a compliant collapse. Our simulations demon+ensiono” remains constant. Reduced surfactant production
strate that the nonaxisymmetric instability mechanism allowsn the lung is known to cause severe respiratory problems
the occurrence of airway closure at fluid volumes that are tode.g., in neonatal respiratory distress syndrpraued within
small to occlude an airway in its axisymmetric state. Furtherthe framework of our model this can be attributed to the
more, even in cases in which the surface tension and thglobal increase in surface tension which was shown to facili-
initial film thickness are large enough to allow the occur-tate the occurrence of airway closure. The presence of sur-
rence of airway closure by the axisymmetric instability factant also affects the dynamics of surface-tension-driven
mechanism, nonaxisymmetric instabilities will cause airwayflows and this effect has not been included in our model.
closure at much earlier times. For instance, y=0.1, 0  Halpern and Grotbe?@ showed that, in their axisymmetric
=520, Fig. 4, predicts axisymmetric airway closure to occumrmodel, the presence of surfactant reduces the growth rate of
att"/(u/K)=1.14x 10%. The analysis of Sec. IV A predicts the primary axisymmetric instability, which would delay the
that the evolving system will become linearly unstable toonset of the secondary instability and therefore be likely to
nonaxisymmetric perturbations #t.,~37.5 and the nu- increase the time to closure.
merical simulation of the nonlinear evolution shows that  Our model ignored the effect of van der Waals forces
nonaxisymmetric airway closure occurs ®byapse~58.7,  which may be important in regions in which the film thick-
long before an axisymmetric occlusion forms. ness becomes very small. As discussed in Sec. IlI, film rup-
To assess the significance of our results in the physiture during the evolution of the primary axisymmetric insta-
ological context, we use Halpern and Grotbe7rgéstimates bility would stop the draining flows from the satellite to the
for the parameter values in the terminal bronchioli, namelymain lobe. This would lead to an axisymmetric equilibrium
Ro=250um, o =20 dynes/cm, u=10°%kg/(ms), E=6  state with multiple static lobes, separated by “dry” regions.
X 10* dynes/cm, »=0.49, andh/Ry=1/10. This corre- The volume of fluid contained in the lobes would depend on
sponds to a nondimensional surface tensiornrefl20 and  the precise moment at which film rupture occurred. It is more
time scale ofT=u/K=1.5x1072s. Hence the simulations difficult to anticipate the effect of film rupture during the
presented in the previous sections were performed witlevolution of the nonaxisymmetric instability. Initially, the
physiologically relevant parameter values. Moreover, airwayfilm would only rupture at isolated points and rupture would
closure by the 3D instability mechanism occurs over timenot necessarily cause the breakup of the film into multiple
scales that are shorter théor comparable tothe period of disconnected regions. While the incorporation of van der
the breathing cycle. For instance, for the parameter estimatéaals forces into our model would be relatively straightfor-
listed above, the dimensional time from the start of the simuward, it is not clear if this would genuinely improve the
lation to the ultimate collapse is=t"/(u/K)~310 which  description of the physics involved in the airway closure
corresponds to a dimensional closure time=d.47 s. problem. We believe that the detailed topology of the airway
Our results are consistent with clinical observationswall (which does not have a smooth surface as assumedl here
since they show the susceptibility to airway closure to bewould begin to affect the fluid flow long before van der
enhanced by an increase in surface teng@g., in respira- Waals forces become important.
tory distress syndromeby an increase in the initial thick- Our model of the airway wall neglected its multilayer
ness of the liquid lininde.g., in pulmonary edemaand by a  internal structuré! its viscoelastic behavior, and the effects
structural weakening of the airway walls. All three effects of external tethering. These effects will influence the param-
cause an increase in the initial compression of the airway andter values for which airway closure can occur and the time
thus render the wall more liable to buckling instabilities. Ad- scale over which it develops. Nevertheless, we believe that
ditionally, these effects lead to a much faster growth of thenone of these effects will be able to completely suppress the
nonaxisymmetric instabilities when they develop. airway closure mechanism analyzed here. Once the radius of
The film thicknesses used in the simulations presentethe air-liquid interface has been reduced sufficiefpgssi-
here are larger than those typically encountered in the axiallply by applying a relatively larger external pressure to over-
uniform liquid lining of a healthy lungsee, e.g., Ref. 25 come the additional stiffness provided by the external tether-
We expect the results presented in this study to be mainling), the rapid increase in the pressure jump over the highly
applicable to situations in which diseases such as edenmurved air-liquid interface cannot possibly be balanced by
have led a noticeable thickening of the liquid lining. This is any of these restorin¢pr retarding forces.
because, even though the nonaxisymmetric instabilities also The external tethering and the multilayer structure of the
develop at much smaller film thicknesses, the time scale foairway wall could, however, lead to a change in the most
their growth becomes much larger than the period of thaunstable azimuthal wavenumbdl. References 27 and 28
breathing cycle. The development of the instability is there-demonstratedin two-dimensional geometrigshat both ef-
fore likely to be affected by the periodic expansion and confects tend to cause an increase Ny and physiological
traction of the airways, an effect that we have neglected irbservations do indeed suggest that airways buckle with
our model. larger wavenumbers than predicted by our model.
In an attempt to keep our theoretical model as simple as  Finally, we note that our analysis was performed with
possible, we have only incorporated those physical effectperiodic boundary conditions whereas the bronchial airways
that we believe to be of primary importance for the develop-branch frequently. Our simulations predict airway closure to
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| sensitive to slight changes in the load on the wall. The slight
i Modified lub. th. differences between the fluid tractions predicted by the lubri-
| it Linear lub. th. cation theory model and the full Stokes equations duting

e Stokes <teonapse @re therefore sufficient to delay the occurrence of
! the final collapse in the Stokes flow simulation by a finite
amount.

Figure 16 also shows the predictions obtained from the
classical lubrication theory model in which the expressions
for k, andM in (12) were linearized with respect to the wall
displacements and the film thickness. This model already
provides a poor description of the system’s axisymmetric
evolution and completely fails to capture the nonaxisymmet-
ric instability and the ultimate collapse.
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APPENDIX B: A LOWER BOUND FOR o,

In Sec. IV A we definedr,,,;, as the value of the nondi-
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075 F mensional surface tension, below which the airway never
07F e becomes unstable to nonaxisymmetric perturbations. We de-
0_65; termined an upper limit obr,j,~63 (for Hy=0.1 andpyi;
0 200 700 50800 1000 500 =2.9 by monitoring the stability of the evolving axisymmet-
(o) t=1t/HWK) ric configuration up to a time of=t"/(u/K)=2.2x 10"

FIG. 16. Comparison of lubrication theory, using the full nonlinear expres—EVen after such Iarge tlme-s’ -the- SyStem contlnu.es to evglve
sions forM and «p,, Stokes flow, and class,ical lubrication theory with lin- and the curvgture of the alr-IIqUId mtgrface contmue; to in-
earized expressions fag, andM. Hy=0.1, pyy;=2.9, o= 100. crease, albeit very slowly, in the region of the main lobe.
Therefore, at even larger times, nonaxisymmetric instabilities
may still occur at smaller values of.
occur in a highly localized fashioftypically, the buckling We will now derive a lower limit foro,,,;, by investigat-
region extends over two to three airway diametdfience, if  ing the (statig stability of the system’s final axisymmetric
the occlusion develops in the central part of an individualequilibrium configurations to nonaxisymmetric perturba-
airway, the support provided by the bifurcations is unlikelytions. Ast— o, the satellite lobe completely drains into the
to have a major effect on the instability discussed here.  main lobe whose air-liquid interface adopts a shape of con-
stant curvaturex,, The main lobe only wets the wall over
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Figure 18 shows the interface curvatukg,q and the

axial length A ,q of these equilibrium configurations as a
function of the wavelength\, for a film of initial thickness
Ho=0.1. Curve | represents the uniform liquid filraf con-
Figure 16 shows the evolution of the control radii for the stant curvaturec,,=-1/(1-Hy) and lengthA,.=A]. This
same parameter values that were used in Fig. 9. The soliconfiguration becomes unstable beyond point A, when
lines represent the results obtained from the lubrication>27w(1-Hg). Curve Il shows the curvature and length of an
theory model12) while the dotted lines were obtained from unduloid-shaped air-liquid interface that encloses the same
a full 3D Stokes flow simulatior{performed by Hazel and volume of fluid as the uniform liquid filnisee Ref. 2 For a
Heil; see Ref. 20 for further details of the comparisdeven  range of wavelengths, two different unduloids exist. At the
though the initial film thicknes$1,=0.1 is rather largéby  lower end of this curvépoint C), the unduloid degenerates
the standards of “classical” lubrication theprthe use of the into a minimal occluding liquid bridge(of curvature
exact nonlinear expressions for and «y, in Eq. (12) ensures  ky,q=—2 and lengthA,,=2; state Ill in Fig. 17. For A
that the agreement with the full Stokes flow simulation is>2/3Hq(2—-Hy), curve lll in Fig. 18 represents occluding
very good. The two simulations only differ significantly in liquid bridges of finite thickness.
their predictions of the timé;y,pse at Which the final cata- Everett and Haynésdetermined the stability of these
strophic collapse occurs. While the occurre@enonoccur-  equilibria to constant-volume perturbations by considering
rence of the nonaxisymmetric compliant collapse can bethe “effective area” of the various configurations. In Fig. 18
predicted with either code, the precise valuegf,,sciS very — markers indicate configurations that are stable to small am-

APPENDIX A: VALIDATION AND COMPARISON
WITH 3D STOKES FLOW SIMULATIONS
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FIG. 17. Sketch of the possible axisymmetric equilibrium configuratidns.
A uniform liquid film; (I1) a finite-length unduloid(lIl') an occluding liquid
bridge; shown here as a minimal liquid bridge.
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FIG. 18. (a) Curvaturex,,y and(b) length A4 of the equilibrium configu-
rations that have the same volume of fluid as a uniform liquid film of initial
thicknessHy=0.1 and(wavelength A. The markers in(b) indicate stable
equilibria; hollow markers indicate metastable states.
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Unduloid branch
Occluding liquid ~ ~~—__
bridge e

(b)

FIG. 19. The thin lines sho\e) the curvaturec,,q and(b) the lengthA g

of the unduloid that develops when a uniform liquid film of initial thickness
Hy undergoes an axisymmetric instability of wavelengthThe thick lineE
indicates parameter combinations for whitk 2v‘°27-r(1—H0) and thus cor-
responds to configurations that develop from the fastest growing perturba-
tion to the initially uniform liquid film. The solid and dotted parts of this
curve indicate stable and unstable configurations.

plitude perturbations. In a certain range of wavelengths
(7.65< A <9.17), identified by the hollow markers, the oc-
cluding liquid bridge configuration has a smaller effective
area than the correspondifigetastableunduloid but finite
amplitude perturbations are required to allow a continuous
transition between these two states. BRor 9.17, the undu-
loid no longer exists and the only nontrivial equilibrium state
is the occluding liquid bridge.

The thin lines in Fig. 19 show the same curves as in Fig.
18 for a number of different initial film thicknesseé, (for
clarity only the unduloid branch Il is shownThe thick line,
E, indicates parameter combinations for whighr 2\2m(1
—Hg) and thus identifies the possible final equilibrium con-
figurations for axisymmetric instabilities that originate from
the fastest growing perturbation to the initial, uniform state.
The dotted parts of the curve represent unstable equilibria.

For thin films, 0<Hy<0.117, the fastest growing per-
turbation to the uniform film will evolve towards an undu-
loid. The occluding liquid bridge represents a possible equi-
librium state for Hy>0.04, but it is stable only foH,
>0.095. Furthermore, it can only be realized in a continuous
evolution from the axially uniform state foH,>0.117.
Films of greater thickness evolve towards stable occluding
liquid bridges of increasing thickness.

When the axisymmetric instability has evolved towards
its final, stable equilibrium state, the load on the axisymmet-
ric wall is therefore given by
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140 F APPENDIX C: COMPARISON WITH HALPERN AND
; GROTBERG

120F Po=2.9

ok Niovo P =10 In this appendix, we provide a more detailed comparison
S N T Pipie = -2.0 between the results presented in Sec. Il and those obtained

5 80 F previously by Halpern and Grotbel$iG) in their study of

60 F axisymmetric airway closureHG's wall model incorporated

405_ the effects of axial prestress, wall damping, and azimuthal
i (hoop stress. In an attempt to keep our model as simple as

20F s B possible, the first two of these effects were ignored in our

0 bt st 01201401601802 study. HG’s wall-stiffness paramet€rcan be related to the

H, nondimensional surface tensian via I'=1/12(h,/Ry)?o.
The values ofr used in our study are at the lof@nd physi-
FIG. 20. The lower limit foroyy, as a function of the initial film thickness  ologically appropriate end of the range explored in HG’s
Ho for various values 0y A=212m(1=Ho). study and in this regime HG'’s analysis agrees with the re-
sults presented in Sec. llI: wall elasticity leads to a small
increase in the growth rates of the axisymmetric instability
(see, e.g., HG’s Fig. 6 foF=0.1 which corresponds to

. ~120). The infinite growth rates that HG predicted for cer-
- (pext_ O'Kund)N if 0 < |X1| = Aund! ) 9 P

f= ) N (B1) tain finite-wavelength perturbation at zero wall damping,
~ PexN if Aung< X< A, only occur at larggand, in the context of the physiological
] problem, probably somewhat unrealigti@lues ofI".
where, for a given value dfly, the values of\ng and yng Direct comparisons between the finite-amplitude simula-
are given by the solid part of the lire in Fig. 19. tions are difficult because HG only provide detailed illustra-

We insert this(statig load into (1) and investigate the tions of the nonlinear evolution for cases with large wall
stability of the wall's axisymmetric state by the proceduregamping. While this precludes direct comparisons, Fig. 9 in
described in Sec. IV A. In the present case, the govemingnejr paper shows that the rapid ultimate snap-off towards an
equations have no time dependence, therefore the finite elgyjsymmetric occlusion occurs if and when the Rayleigh in-
ment discretization of th©(e) equations yields a standard stapility reduces the minimum radius of the air-liquid inter-
eigenvalue problem of the formx=0. The condition for  face toR,,~0.5. This is consistent with the results shown in
instability, detA)=0, establishes the values offor which  £ig 4 in the present paper.
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