Continuous functions nowhere differentiable.

In 1872 Weierstrass showed that there exist continuous functions that are nowhere differentiable. Such a function can be constructed out of infinitely many translates of $|x|$, a function which is not differentiable at the origin. Note that this example is not due to Weierstrass, for that, go to the end.

On $[0,1]$ let

$$g_0(x) = \begin{cases}
 x & \text{if } 0 \leq x \leq 0.5, \\
 1 - x & \text{if } 0.5 \leq x \leq 1.
\end{cases}$$

This can be written as

$$g_0(x) = \frac{1}{2} - \left| x - \frac{1}{2} \right|.$$

Graph of g_0:

Next define g_1 on \mathbb{R} by demanding that $g_1(x + m) = g_0(x)$ for all $x \in [0,1]$ and $m \in \mathbb{Z}$, so g_1 now has period 1. This can be written as

$$g_1(x) = \frac{1}{2} - \left| x - \lfloor x \rfloor - \frac{1}{2} \right|$$

where $\lfloor x \rfloor$ is the largest integer $n \leq x$.

1
Then for any \(n \geq 1 \) let
\[
g_n(x) = g_1 \left(\frac{4^{n-1}x}{4^{n-1}} \right).
\]

Note that the period of \(g_n \) is \(1/4^{n-1} \). Finally define
\[
g(x) = \sum_{n=1}^{\infty} g_n(x) = \sum_{n=1}^{\infty} g_1 \left(\frac{4^{n-1}x}{4^{n-1}} \right)
\]
for \(x \in \mathbb{R} \).

Graph of \(g_1 + g_2 \) on \([0, 1]\):

\[
\begin{array}{c}
\text{Graph of } g_1: \\
\end{array}
\]
Graph of $g_1 + g_2 + g_3$ on $[0, 1]$:

Graph of $g_1 + g_2 + g_3 + g_4$ on $[0, 1]$:

Graph of $g_1 + g_2 + g_3 + g_4 + g_5$ on $[0, 1]$:
There is no point in drawing the sum with more terms, for the additional
terms would give a contribution smaller than the width of the line used to
draw these graphs. Thus the graph would look identical to the last one above.

Because $|g_n(x)| \leq 2/4^n$ for all x, a comparison test will give that $g(x)$ is
defined for all x. But we have to do more if we hope to say that “the infinite
sum of continuous functions is continuous”. For this you have to use the
Weierstrass M-test and I leave it to the interested student to look this up.

One interesting property of $g(x)$ is that it is nowhere monotonic. That
is, there is no point $a \in \mathbb{R}$ which is contained in some interval $(a - \delta, a + \delta)$
on which g is monotonic. In other words, for all $a \in \mathbb{R}$ and all $\delta > 0$ there
exist $x, y \in (a - \delta, a + \delta)$ with $x > y$ and $g(x) > g(y)$ and there exist
$x', y' \in (a - \delta, a + \delta)$ with $x' > y'$ and $g(x') < g(y')$. We do not prove this
here. We do, instead, prove

Theorem

The function g is nowhere differentiable on \mathbb{R}.

Proof Let $a \in \mathbb{R}$ be given. Let $n \geq 1$.

Claim There exists h_n (depending on a as well as n) such that

$$|h_n| = \frac{1}{4^n} \quad \text{and} \quad |g_n(a + h_n) - g_n(a)| = |h_n|.$$

Proof of Claim Since we require $|h_n| = 1/4^n$, we must have $h_n = \pm 1/4^n$
with the sign to be chosen. Write $4^{n-1}a = q + r$. Then

$$4^{n-1}(a + h_n) = 4^{n-1}(a \pm \frac{1}{4^n}) = q + r \pm \frac{1}{4}$$

where the sign in \pm is to be chosen.

If $0 \leq r < \frac{1}{4}$ choose $h_n = \frac{1}{4^n}$, so $4^{n-1}(a + h_n) = q + r + \frac{1}{4}$
and, since $0 < r + \frac{1}{4} < \frac{1}{2}$, we have $g_1\left(4^{n-1}(a + h_n)\right) = r + \frac{1}{4}$,

if $\frac{1}{4} \leq r < \frac{1}{2}$ choose $h_n = -\frac{1}{4^n}$, so $4^{n-1}(a + h_n) = q + r - \frac{1}{4}$
and, since $0 < r - \frac{1}{4} < \frac{1}{2}$, we have $g_1\left(4^{n-1}(a + h_n)\right) = r - \frac{1}{4}$,

if $\frac{1}{2} \leq r < \frac{3}{4}$ choose $h_n = \frac{1}{4^n}$, so $4^{n-1}(a + h_n) = q + r + \frac{1}{4}$
and, since $\frac{1}{2} < r + \frac{1}{4} < 1$, we have $g_1\left(4^{n-1}(a + h_n)\right) = 1 - \left(r + \frac{1}{4}\right)$,

if $\frac{3}{4} \leq r < 1$ choose $h_n = -\frac{1}{4^n}$, so $4^{n-1}(a + h_n) = q + r - \frac{1}{4}$
and, since $\frac{1}{2} < r - \frac{1}{4} < 1$, we have $g_1\left(4^{n-1}(a + h_n)\right) = 1 - \left(r - \frac{1}{4}\right)$,
Thus, with these choices of h_n, we have

If $0 \leq r < \frac{1}{4}$ then $g_1(4^{n-1}a) = r$ so $g_1(4^{n-1}(a + h_n)) - g_1(4^{n-1}a) = \frac{1}{4}$,

if $\frac{1}{4} \leq r < \frac{1}{2}$ then $g_1(4^{n-1}a) = r$ so $g_1(4^{n-1}(a + h_n)) - g_1(4^{n-1}a) = -\frac{1}{4}$,

if $\frac{1}{2} \leq r < \frac{3}{4}$ then $g_1(4^{n-1}a) = 1 - r$ so $g_1(4^{n-1}(a + h_n)) - g_1(4^{n-1}a) = -\frac{1}{4}$,

if $\frac{3}{4} \leq r < 1$ then $g_1(4^{n-1}a) = 1 - r$ so $g_1(4^{n-1}(a + h_n)) - g_1(4^{n-1}a) = \frac{1}{4}$.

Thus in all cases we have

$$|g_1(4^{n-1}(a + h_n)) - g_1(4^{n-1}a)| = \frac{1}{4}.$$

Hence

$$|g_n(a + h_n) - g_n(a)| = \frac{1}{4^{n-1}} |g_1(4^{n-1}(a + h_n)) - g_1(4^{n-1}a)|$$

$$= \frac{1}{4^{n-1}} \times \frac{1}{4} = \frac{1}{4^n} = |h_n|$$

as required. □

Note that if above we choose any h'_n with $|h'_n| \leq |h_n|$ but *with the same sign* then the proof above shows that

$$|g_1(4^{n-1}(a + h'_n)) - g_1(4^{n-1}a)| = 4^{n-1}|h'_n|$$

and thus

$$|g_n(a + h'_n) - g_n(a)| = |h'_n|. \quad (1)$$

Claim With the choice of h_n above we have

$$|g_m(a + h_n) - g_m(a)| = \begin{cases} |h_n| & \text{if } m \leq n \\ 0 & \text{if } m > n. \end{cases}$$

Proof of Claim Assume $m > n$. Then

$$g_m(a + h_n) = \frac{1}{4^{m-1}} g_1(4^{m-1}(a + h_n))$$

$$= \frac{1}{4^{m-1}} g_1(4^{m-1}(a \pm \frac{1}{4^n}))$$

since $h_n = \pm 1/4^n$ for some choice of the sign,

$$= \frac{1}{4^{m-1}} g_1(4^{m-1}a \pm 4^{m-n-1})$$

$$= \frac{1}{4^{m-1}} g_1(4^{m-1}a)$$

since $4^{m-n-1} \in \mathbb{Z}$ and g_1 is of period 1

$$= g_m(a).$$
Hence
\[g_m (a + h_n) - g_m (a) = 0. \]

Assume \(m < n \). Then
\[g_m (a) = \frac{1}{4^{n-1}} g_1 (4^{n-1} a) = \frac{4^{n-m}}{4^{n-1}} g_1 \left(4^{n-1} \left(\frac{a}{4^{n-m}} \right) \right) = 4^{n-m} g_n \left(\frac{a}{4^{n-m}} \right). \]

Thus
\[g_m (a + h_n) - g_m (a) = 4^{n-m} \left(g_n \left(\frac{a}{4^{n-m}} + \frac{h_n}{4^{n-m}} \right) - g_n \left(\frac{a}{4^{n-m}} \right) \right). \]

Use the note above, as in (1) with \(h'_n = h_n / 4^{n-m} \) to say
\[|g_m (a + h_n) - g_m (a)| = 4^{n-m} \left(\left| g_n \left(\frac{a}{4^{n-m}} + \frac{h_n}{4^{n-m}} \right) - g_n \left(\frac{a}{4^{n-m}} \right) \right| \right) \]
\[= 4^{n-m} \times \left| \frac{h_n}{4^{n-m}} \right| = |h_n| \]
as required.

We use this claim to say that
\[g (a + h_n) - g (a) = \sum_{m=1}^{\infty} (g_m (a + h_n) - g_m (a)) = \sum_{m=1}^{n} (g_m (a + h_n) - g_m (a)), \]
because the terms are zero when \(m > n \). Then
\[\frac{g (a + h_n) - g (a)}{h_n} = \sum_{m=1}^{n} \frac{g_m (a + h_n) - g_m (a)}{h_n}. \] \hspace{1cm} (2)

Since \(|g_m (a + h_n) - g_m (a)| = |h_n| \) we have that, for each term in the sum,
\[\frac{g_m (a + h_n) - g_m (a)}{h_n} = +1 \text{ or } -1. \]

Thus \((g (a + h_n) - g (a)) / h_n \) is a finite sum of +1’s and −1’s.

First, this means that for every \(n \geq 1 \), the sum \((g (a + h_n) - g (a)) / h_n \) in (??) is an integer.

But further, \((g (a + h_n) - g (a)) / h_n \) is a sum of \(n \) terms, each either +1 or −1. Let \(r \) be the number of terms that are +1, and \(s \) the number that are −1. Then the number of terms in the sum \(n = r + s \) while the value of the sum is \(r - s \). Note that if \(n \) is odd then \(r \) and \(s \) have different parity (i.e.
one is odd, the other even) and so \(r - s \), the value of the sum, is odd. If \(n \) is even then \(r \) and \(s \) have the same parity, in which case \(r - s \), the value of the sum, is even.

Hence the sequence

\[
\left\{ \frac{g(a + h_n) - g(a)}{h_n} \right\}_{n \geq 1}
\]

is of integers which are odd when \(n \) is odd and even when \(n \) is even. Hence

\[
\lim_{n \to \infty} \frac{g(a + h_n) - g(a)}{h_n}
\]

(3)
cannot exist with finite limit. If \(g \) were differentiable at \(a \) then

\[
\lim_{h \to 0} \frac{g(a + h) - g(a)}{h}
\]

(4)
would exist. Since the sequence \(\{h_n\}_{n \geq 1} \) chosen above satisfies \(\lim_{n \to \infty} h_n = 0 \), the existence of (3) would imply the existence of (2) with the same value. Since the limit in (2) does not exist the function cannot be differentiable at \(a \).

Note you may think that this example works because the function \(g_1 \) is non-differentiable at a point. This is not the case. It works because we take a sequence of periodic functions \(g_n \) with ever decreasing periods (i.e., ever higher frequencies of oscillation). We have to dampen the magnitude of the oscillations (by the factor \(1/4^{n-1} \) in the sum) so we can add them together.

We can get these oscillations from trigonometric functions. And this was the example of Weierstrass’s.

Theorem Let \(0 < a < 1 \), and choose a positive odd integer \(b \) large enough that \(\frac{\pi}{ab - 1} < \frac{2}{3} \). Define the function \(W : \mathbb{R} \to \mathbb{R} \),

\[
W(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x).
\]

Then \(W \) is continuous on \(\mathbb{R} \) but differentiable nowhere.

Note, that this shows that an infinite sum of differentiable functions need not be differentiable anywhere!

Reference: